Рефераты Изложения История

Принцип суперпозиции полей определение. Принцип суперпозиции для напряжённости и потенциала электрического поля

Одна из задач, которые ставит электростатика перед собой – это оценка параметров поля при заданном стационарном распределении зарядов в пространстве. И принцип суперпозиции является одним из вариантов решения такой задачи.

Принцип суперпозиции

Предположим наличие трех точечных зарядов, находящихся во взаимодействии друг с другом. При помощи эксперимента возможно осуществить измерение сил, действующих на каждый из зарядов. Для нахождения суммарной силы, с которой на один заряд действуют два других заряда, нужно силы воздействия каждого из этих двух сложить по правилу параллелограмма. При этом логичен вопрос: равны ли друг другу измеряемая сила, которая действует на каждый из зарядов, и совокупность сил со стороны двух иных зарядов, если силы рассчитаны по закону Кулона. Результаты исследований демонстрируют положительный ответ на этот вопрос: действительно, измеряемая сила равна сумме вычисляемых сил согласно закону Кулона со стороны других зарядов. Данное заключение записывается в виде совокупности утверждений и носит название принципа суперпозиции.

Определение 1

Принцип суперпозиции :

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух других точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Принцип суперпозиции полей заряда является одним из фундаментов изучения такого явления, как электричество: значимость его сопоставима с важностью закона Кулона.

В случае, когда речь идет о множестве зарядов N (т.е. нескольких источников поля), суммарную силу, которую испытывает на себе пробный заряд q , можно определить по формуле:

F → = ∑ i = 1 N F i a → ,

где F i a → является силой, с которой влияет на заряд q заряд q i , если прочий N - 1 заряд отсутствует.

При помощи принципа суперпозиции с использованием закона взаимодействия между точечными зарядами существует возможность определить силу взаимодействия между зарядами, присутствующими на теле конечных размеров. С этой целью каждый заряд разбивается на малые заряды d q (будем считать их точечными), которые затем берутся попарно; вычисляется сила взаимодействия и в заключение осуществляется векторное сложение полученных сил.

Полевая трактовка принципа суперпозиции

Определение 2

Полевая трактовка : напряженность поля двух точечных зарядов есть сумма напряженностей, создаваемым каждым из зарядов при отсутствии другого.

Для общих случаев принцип суперпозиции относительно напряженностей имеет следующую запись:

E → = ∑ E i → ,

где E i → = 1 4 π ε 0 q i ε r i 3 r i → является напряженностью i -го точечного заряда, r i → - радиусом вектора, проложенного от i -го заряда в некоторую точку пространства. Указанная формула говорит нам о том, что напряженность поля любого числа точечных зарядов есть сумма напряженностей полей каждого из точечных зарядов, если другие отсутствуют.

Инженерная практика подтверждает соблюдение принципа суперпозиции даже для очень больших напряженностей полей.

Значимым размером напряженности обладают поля в атомах и ядрах (порядка 10 11 - 10 17 В м), но и в этом случае применялся принцип суперпозиции для расчетов энергетических уровней. При этом наблюдалось совпадение результатов расчетов с данными экспериментов с большой точностью.

Все же следует также заметить, что в случае очень малых расстояний (порядка ~ 10 - 15 м) и экстремально сильных полей принцип суперпозиции, вероятно, не выполняется.

Пример 1

Например, на поверхности тяжелых ядер при напряженности порядка ~ 10 22 В м принцип суперпозиции выполняется, а при напряженности 10 20 В м возникают квантово-механические нелинейности взаимодействия.

Когда распределение заряда является непрерывным (т.е. отсутствует необходимость учета дискретности), совокупная напряженность поля задается формулой:

E → = ∫ d E → .

В этой записи интегрирование проводится по области распределения зарядов:

  • при распределении зарядов по линии (τ = d q d l - линейная плотность распределения заряда) интегрирование проводится по линии;
  • при распределении зарядов по поверхности (σ = d q d S - поверхностная плотность распределения) интегрирование проводится по поверхности;
  • при объемном распределении заряда (ρ = d q d V - объемная плотность распределения) интегрирование проводится по объему.

Принцип суперпозиции дает возможность находить E → для любой точки пространства при известном типе пространственного распределения заряда.

Пример 2

Заданы одинаковые точечные заряды q , расположенные в вершинах квадрата со стороной a . Необходимо определить, какая сила воздействует на каждый заряд со стороны других трех зарядов.

Решение

На рисунке 1 проиллюстрируем силы, влияющие на любой из заданных зарядов в вершинах квадрата. Поскольку условием задано, что заряды одинаковы, для иллюстрации возможно выбрать любой из них. Сделаем запись суммирующей силы, влияющей на заряд q 1:

F → = F 12 → + F 14 → + F 13 → .

Силы F 12 → и F 14 → являются равными по модулю, определим их так:

F 13 → = k q 2 2 a 2 .

Рисунок 1

Теперь зададим направление оси О Х (рисунок 1), спроектируем уравнение F → = F 12 → + F 14 → + F 13 → , подставим в него полученные выше модули сил и тогда:

F = 2 k q 2 a 2 · 2 2 + k q 2 2 a 2 = k q 2 a 2 2 2 + 1 2 .

Ответ: сила, оказывающее воздействие на каждый из заданных зарядов, находящихся в вершинах квадрата, равна F = k q 2 a 2 2 2 + 1 2 .

Пример 3

Задан электрический заряд, распределенный равномерно вдоль тонкой нити (с линейной плотностью τ). Необходимо записать выражение, определяющее напряженность поля на расстоянии a от конца нити вдоль ее продолжения. Длина нити – l .

Рисунок 2

Решение

Первым нашим шагом будет выделение на нити точечного заряда d q . Составим для него, в соответствии с законом Кулона, запись, выражающую напряженность электростатического поля:

d E → = k d q r 3 r → .

В заданной точке все векторы напряженности имеют одинаковую направленность вдоль оси ОХ, тогда:

d E x = k d q r 2 = d E .

Условием задачи дано, что заряд имеет равномерное распределение вдоль нити с заданной плотностью, и запишем следующее:

Подставим эту запись в записанное ранее выражение напряженности электростатического поля, проинтегрируем и получим:

E = k ∫ a l + a τ d r r 2 = k τ - 1 r a l + a = k τ l a (l + a) .

Ответ: напряженность поля в указанной точке будет определяться по формуле E = k τ l a (l + a) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Полей. Поле диполя

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q 1 , Q 2 ,…, Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая сила F, действующая со стороны поля на пробный заряд Q 0 равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q;.

Согласно (79.1), F = Q 0 E и F 1 = Q 0 E 1 , где Е - напряженность результирующего поля, а Е 1 - напряженность поля, создаваемого зарядом Q 1 . Подставляя последние выражения в (80.1), получаем

(80.2)

Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+Q, - Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положи тельному и равный расстоянию между ними, называется плечом диполя l. Вектор

(80.3)

совпадающий по направлению с плечом диполя и равный произведению заряда |Q|на плечо 1, называется электрическим моментом диполя или дипольным моментом (рис. 122).

где Е + и Е_ - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l /2 ≪ г, поэтому

2. Напряженность поля на перпендикуляре, восставленном к осям из его середины, в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому

где г" - расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор Е в, получим

(80.5)

Подставив в выражение (80.S) значение (80.4), получим

Вектор E g имеет направление, противоположное вектору электрического момента диполя (вектор р направлен от отрицательного заряда к положительному).

Теорема Гаусса для электростатического

Поля в вакууме

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777-1855) теорему, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

В соответствии с формулой (79.3) поток вектора напряженности сквозь сферическую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен


Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее.

Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Бели замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e 0 , т. е.

(81.1)

Знак потока совпадает со знаком заряда Q.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Е, полей, создаваемых каждым зарядом в отдельности: . Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Q i /e 0 . Следовательно,

(81.2)

Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0 . Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801-1862), а затем независимо от него применительно к электростатическому полю - К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой объемной плотностью p = dQ/dV, различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, охватывающей некоторый объем V,

(81.3)

Используя формулу (81.3), теорему Гаусса (81.2) можно записать так:

Это некоторое положение, которое применяется при ряде случаев. Это один из общих физических законов, на которых строится физика, как наука. Этим он и примечателен для учёных, которые применяют его в разных ситуациях.

Если рассмотреть принцип суперпозиции в самом общем смысле, то согласно ему, сумма воздействия внешних сил, действующих на частицу, будет складываться из отдельных значений каждой из них.

Данный принцип применяется к различным линейным системам, т.е. таким системам, поведение которых можно описать линейными соотношениями. Примером может послужить простая ситуация, когда линейная волна распространяется в какой-то определённой среде, в этом случае её свойства будут сохраняться даже под действием возмущений, возникающих из-за самой волны. Эти свойства определяются как конкретная сумма эффектов каждой из гармоничных составляющих.

Сферы применения

Как уже было сказано, принцип суперпозиции имеет достаточно широкие сферы применения. Наиболее ярко его действие можно увидеть в электродинамике. Однако важно помнить, что рассматривая принцип суперпозиции, физика не считает его конкретным постулатом, а именно следствием из теории электродинамики.

Например, в электростатике данный принцип действует при изучении Система зарядов в конкретной точке создаёт напряжённость, которая будет складываться из суммы напряжённостей полей каждого из заряда. Данный вывод используется на практике, потому что с его помощью можно сосчитать потенциальную энергию электростатического взаимодействия. В этом случае нужно будет подсчитать потенциальную энергию каждого отдельного заряда.

Это подтверждается уравнением Максвелла, которое линейно в вакууме. Отсюда также следует тот факт, что свет не рассеивается, а распространяется линейно, поэтому отдельные лучи не взаимодействуют друг с другом. В физике это явление часто называют принципом суперпозиции в оптике.

Стоит также отметить, что в классической физике принцип суперпозиции вытекает из линейности уравнений отдельных движущихся линейных систем, поэтому является приближенным. Он основывается на глубоких динамических принципах, но приближенность делает его не универсальным и не фундаментальным.

В частности сильное описывается другими уравнениями, нелинейными, поэтому и принцип не может применяться в данных ситуациях. Макроскопическое также не подчиняется данному принципу, так как зависит от воздействия внешних полей.

Однако принцип суперпозиции сил является фундаментальным в квантовой физике. Если в других разделах он применяется с некоторыми погрешностями, то на квантовом уровне работает достаточно точно. Любая квантомеханическая система изображается из и векторов линейного пространства, и если она подчиняется линейным функциям, то её состояние определяется по принципу суперпозиции, т.е. складывается из суперпозиции каждого состояния и волновой функции.

Границы применения достаточно условны. Уравнения классической электродинамики линейны, но это не является основным правилом. Большинство фундаментальных теорий физики строятся по нелинейным уравнениям. Это значит, что в них принцип суперпозиции выполняться не будет, сюда можно отнести общую теорию относительности, квантовую хромодинамику, а также теорию Янга-Миллса.

В некоторых системах, где принципы линейности применимы только отчасти, может условно применяться и принцип суперпозиции, например, слабые гравитационные взаимодействия. Кроме того, при рассмотрении взаимодействия атомов и молекул принцип суперпозиции также не сохраняется, этим объясняется разнообразие физических и химических свойств материалов.

Рассмотрим метод определения значения и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов q 1 , q 2 , ..., Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. §6), т.е. результирующая сила F , действующая со стороны поля на пробный заряд Q 0 , равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q i:

Согласно (79.1), F =Q 0 E и F i ,=Q 0 E i , где Е -напряженность результирующего поля, а Е i - напряженность поля, создаваемого зарядом Q i . Подставляя последние выражения в (80.1), получим

Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+ Q, -Q ), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называется плечом диполя l . Вектор

совпадающий по направлению с плечом диполя и равный произведению заряда

| Q | на плечо l , называется электрическим моментом диполя р или дипольным моментом (рис. 122).

Согласно принципу суперпозиции (80.2), напряженность Е поля диполя в произвольной точке

Е =Е + + Е - ,

где Е + и Е - - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолжении оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Е A + - .

Обозначив расстояние от точки А до середины оси диполя через л, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l /2<

2. Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому

где r " - расстояние от точки В до середины плеча диполя. Из подобия равнобед-

ренных треугольников, опирающихся плечо диполя и вектор ев, получим

Е B + l / r ". (80.5)

Подставив в выражение (80.5) значение (80.4), получим

Вектор Е B имеет направление, противоположное электрическому моменту диполя (вектор р направлен от отрицательного заряда к положительному).

Одной из основных задач электростатики является оценка параметров поля при заданном, стационарном, распределении зарядов в пространстве. Один из способов решения подобных задач основан на принципе суперпозиции . Суть его в следующем.

Если поле создается несколькими точечными зарядами, то на пробный заряд q действует со стороны заряда qk такая сила, как если бы других зарядов не было. Результирующая сила определится выражением:

это принцип суперпозиции или независимости действия сил.

Т.к. , то – результирующая напряженность поля в точке, где расположен пробный заряд, так же подчиняется принципу суперпозиции :

(1.4.1)

Это соотношение выражает принцип наложения или суперпозиции электрических полей и представляет важное свойство электрического поля. Напряженность результирующего поля, системы точечных зарядов равна векторной сумме напряженностей полей, созданных в данной точке каждым из них в отдельности.

Рассмотрим применение принципа суперпозиции в случае поля, созданного электрической системой из двух зарядов с расстоянием между зарядами, равными l (рис. 1.2).


Рис. 1.2

Поля, создаваемые различными зарядами, не влияют друг на друга, поэтому вектор результирующего поля нескольких зарядов может быть найден по правилу сложения векторов (правило параллелограмма)

.
, и , так как задача симметрична.

В данном случае

и

Следовательно,

(1.4.2)

Рассмотрим другой пример. Найдем напряженность электростатического поля Е , создаваемую двумя положительными зарядами q 1 и q 2 в точке А , находящейся на расстоянии r 1 от первого и r 2 от второго заря-дов (рис. 1.3).


Рис. 1.3

; .

Воспользуемся теоремой косинусов:

(1.4.3)

Где .

Если поле создается не точечными зарядами , то используют обычный в таких случаях прием. Тело разбивают на бесконечно малые элементы и определяют напряженность поля создаваемого каждым элементом, затем интегрируют по всему телу:

(1.4.4)

Где – напряженность поля, обусловленная заряженным элементом. Интеграл может быть линейным, по площади или по объему в зависимости от формы тела. Для решения подобных задач пользуются соответствующими значениями плотности заряда:
– линейная плотность заряда, измеряется в Кл/м;
– поверхностная плотность заряда, измеряется в Кл/м2;
– объемная плотность заряда, измеряется в Кл/м3.

Если же поле создано сложными по форме заряженными телами и неравномерно заряженными, то используя принцип суперпозиции, трудно найти результирующее поле.

формуле (1.4.4) мы видим, что – векторная величина:

(1.4.5)

Так что интегрирование может оказаться непростым. Поэтому для вычисления часто пользуются другими методами, которые мы обсудим в следующих темах. Однако в некоторых, относительно простых случаях эти формулы позволяют аналитически рассчитать .

В качестве примеров можно рассмотреть линейное распределение зарядов или распределение заряда по окружности .

Определим напряженность электрического поля в точке А (рис. 1.4) на расстоянии х от бесконечно длинного, линейного, равномерно распределенного заряда. Пусть λ – заряд, приходящийся на единицу длины.


Рис. 1.4

Считаем, что х – мало по сравнению с длиной проводника. Выберем систему координат так, чтобы ось y совпадала с проводником. Элемент длины dy , несет заряд Создаваемая этим элементом напряженность электрического поля в точке А .