Рефераты Изложения История

Химические свойства фосфора. Формула оксида фосфора (V) Способы получения оксида фосфора 5

Оксид фосфора - бесцветное аморфное или стекловидное вещество, существующеев трех кристаллических, двух аморфных и двух жидких формах.

Токсичное вещество. Вызывает ожоги кожи и раздражение слизистой оболочки.

Пентаоксид фосфора очень гигроскопичен. Реагирует со спиртами эфирами, фенолами, кислотами и прочими веществами. В процессе реакции с органическими веществами происходит разрыв связей фосфора с кислородом, и образуются фосфорорганические соединения. Вступает в химические реакции с аммиаком (NH 3) и галогеноводородами с образованием фосфатов аммония и оксигалогенидов фосфора. С основными оксидами образует фосфаты.

Трехмерная модель молекулы

Содержание пентаоксида фосфора в почве и удобрениях

Фактически в почве имеются только соли ортофосфорной кислоты H 3 PO 4 , но в сложных удобрениях могут быть и соли мета-, пиро- и полифосфорных кислот.

Основой для образования ортофосфорной кислоты является пентаоксида фосфора. Именно поэтому, а так же в связи с тем, что растения не поглощают элементарный фосфор, условлено обозначать концентрацию фосфора через содержание пентаоксида фосфора.

P 2 O 5 + 3 H 2 O 2 H 3 PO 4

Все встречающиеся в почве соли ортофосфорной кислоты и одновалентных катионов (NH 4 + , Na + , K +) и однозамещенные соли двухвалентных катионов (Ca(H 2 PO 4) 2 и Mg(H 2 PO 4) 2) растворимы в воде.

Двузамещенные соли двухвалентных катионов в воде не растворимы, но легко растворяются в слабокислых кислотах корневых выделений и органических кислотах жизнедеятельности микроорганизмов. В этой связи они так же являются хорошим источником P 2 O 5 для растений.

Поглощение пентаоксида фосфора растениями

Как указывалось выше, в природе основной источник фосфора - это соли ортофосфорнонй кислоты H 3 PO 4 . Однако после гидролиза пиро-, поли- и метафосфаты так же используются практически всеми культурами.

Гидролиз пирофосфата натрия:

Na 4 P 2 O 7 + H 2 O + 2H + → 2NaH 2 PO 4 +2Na +

Гидролиз триполифосфата натрия:

Na 5 P 3 O 10 + 2H 2 O + 2H + → 3NaH 2 PO 4 +2Na +

Гидролиз метафосфат иона (в кислой среде):

(PO 3) 6 6- + 3H 2 O → H 2 P 3 O 10 3- + H 2 P 2 O 7 2- + H 2 PO 4 -

Ортофосфорная кислота, будучи трехосновной отдиссоциирует три аниона H 2 PO - 4 , HPO 4 2- , PO 4 3- . В условиях слабокислой реакции среды, именно в них возделываются растения, наиболее распространен и доступен первый ион, в меньшей степени второй и практически недоступен третий. Однако люпин, гречиха, горчица, горох, донник, конопля и другие растения способны усваивать фосфор из трехзамещенных фосфатов.

Некоторые растения приспособились усваивать фосфат-ион из фосфорорганических соединений (фитин, глицефосфаты и прочее). Корни данных растений выделяют особый фермент (фотофтазу), который и отщипляет анион фосфорной кислоты от органических соединений, а затем растения поглощают этот анион. К подобного рода растениям относятся горох, бобы, кукуруза. Причем фосфатазная активность возрастает в условиях фосфорного голода.

Многие растения могут питаться фосфором из очень разбавленных растворов, вплоть до 0,01 мг /л P 2 O 5 . Естественно, что удовлетворить потребность в фосфоре растения могут только при условии постоянного возобновления в нем концентрации хотя бы такого же низкого уровня.

Опытным путем установлено, что поглощаемый корнями фосфор прежде всего идет на синтез нуклеотидов, а для дальнейшего продвижения в наземную часть фосфаты вновь поступают в проводящие сосуды корня в виде минеральных соединений.

Рерасчет содержения фосфора в удобрениях

y = x,% × 30,974 (молярная масса ) × 2 / 30,974 (молярная масса ) × 2 + 15,999 (молярная масса O) × 5

х - содержание P 2 O 5 в удобрении, %;

y - содержание P в удобрении, %

y = x, % × 0,43643

Например:

в удобрении содержится 40% оксида фосфора

для пересчета процентного содержания элемента фосфор в удобрении нужно умножить массовую долю оксида в удобрении на массовую долю элемента в оксиде (для P 2 O 5 - 0,43643): 40 * 0,43643 = 17,4572 %

Оксид фосфора и кислоты, возникающие при его растворении в воде, — ценное сырье для химической промышленности. Простое вещество горит в кислороде с образованием белого дыма — так получают оксид в лаборатории. Продукт реакции используется в современных отраслях производственной деятельности как сырье для получения термическим методом различных фосфорных кислот. Затем эти вещества используются при выпуске комплексных и сложных минеральных удобрений (туков).

Элемент № 15

Фосфор — элемент 15-й группы длинного варианта периодической таблицы. Прежняя классификация отводила ему место в главной подгруппе пятой группы. Химический знак — Р — это первая буква латинского названия Phosphorus. Другие важные характеристики:

  • относительная атомная масса — 31;
  • заряд ядра — +15;
  • электронов — 15;
  • валентных электронов — 5;
  • неметаллический элемент.

Фосфору требуется 3 электрона для завершения внешней электронной оболочки, ее октета. В химических реакциях с металлами элемент принимает электроны и достраивает свой валентный слой. В этом случае он восстанавливается, является окислителем. При взаимодействии с более сильными неметаллами фосфор отдает несколько или все валентные электроны, тоже получая завершенное строение внешнего уровня. Эти изменения связаны с активными восстановительно-окислительными свойствами элемента. Например, атомы в составе простого вещества окисляются при горении на воздухе или в кислороде. Могут получиться два рода соединений — оксид фосфора трех- или пятивалентного. Какой продукт будет преобладать, зависит от условий проведения реакции. Типичная валентность, проявляемая фосфором в его соединениях, составляет III(-), III(+), V(+).

«Элемент жизни и мысли»

Выдающийся российский геохимик Е. Ферсман одним из первых обратил внимание на богатое содержание в организме человека атомов фосфора. Они входят в состав важнейших органов, клеточных структур и веществ: костной системы, зубов, нервной ткани, белков и аденозинтрифосфорной кислоты (АТФ). Признанием «заслуг» в живой природе стала знаменитая фраза академика Ферсмана, что Phosphorus — «элемент жизни и мысли».

Фосфор также широко распространен в составе земной коры. В свободном виде атомы Р не встречаются, ведь они легко окисляются — вступают во взаимодействие с кислородом, в результате чего получается оксид фосфора (Р 2 О 5). Существует несколько аллотропных видоизменений элемента, которые объединяются в три группы — белый, красный и черный. Кристаллическая решетка белого фосфора образована молекулами Р 4 . Лабораторные опыты в образовательных учреждениях обычно проводят с красной модификацией. Она неядовитая, в отличие от белой разновидности.

Получение и свойства трехвалентного оксида фосфора

Если сжигание простого вещества производится при недостатке воздуха, то получается фосфористый ангидрид (Р 2 О 3 — его формула). Оксид фосфора (III) — так звучит современное название вещества. Это белый кристаллический порошок, который плавится уже при 24 °С, то есть является неустойчивым при нагревании. При низких температурах составу трехвалентного оксида соответствует формула Р 4 О 6 . Соединение медленно растворяется в воде с образованием фосфористой кислоты Н 3 РО 3 . Она тоже является менее стойкой, чем соединения пятивалентного фосфора.

Название «ангидрид фосфористой кислоты» отражает химическое свойство — способность оксида при гидратации давать начало молекулам кислоты. Теряя электроны, атомы Р в составе трехвалентных соединений окисляются до устойчивого пятивалентного состояния. Фосфористый ангидрид и соответствующая ему кислота являются сильными восстановителями (отдают валентные электроны).

Оксид фосфора (V). Лабораторный способ получения

Образование фосфорного ангидрида происходит при сгорании (окислении) красного или белого фосфора. Реакцию можно проводить в чистом кислороде либо сжигать реагент в воздухе. После прекращения процесса горения, проходящего с выделением белого дыма, в осадке получаем рыхлую белую массу. Это оксид фосфора. Получение его следует проводить под вытяжкой, потому что частички раздражают слизистые покровы органов дыхания.

Можно набрать красный фосфор в ложечку для сжигания веществ, закрепленную в резиновой пробке с отверстием. Вещество следует зажечь, а когда начнется горение — опустить в стекляную термостойкую колбу. Емкость, закрытая пробкой, наполнится клубами дыма, состоящими из молекул димера фосфорного ангидрида (Р 4 О 10 — его формула). Оксид фосфора (V) — название этого вещества. Когда весь кислород в емкости израсходуется, горение прекратится, и белый дым осядет.

Взаимодействие оксида фосфора с водой. Получение фосфорных кислот

Обычно состав пентаоксида фосфора записывают в таком виде: Р 2 О 5 . Можно при его получении налить в колбу немного воды и взболтать. Белый дым растворится с образованием кислоты. Для того чтобы доказать ее присутствие, надо опустить в раствор бумажную полоску универсального индикатора, ее цвет изменится с желтого на красный, что характерно для кислых жидкостей. В колбе взаимодействуют вода и оксид фосфора. Реакции получения кислот сопровождаются их диссоциацией в водном растворе на кислотные остатки, а также ионы водорода, точнее, гидроксония.

  • При сгорании фосфора идет реакция соединения: 4Р + 5О 2 = Р 4 О 10.
  • Растворение полученного ангидрида в холодной воде происходит с образованием метафосфорной кислоты: Р 2 О 5 + Н 2 О = 2НРО 3.
  • Кипячение раствора приводит к появлению в нем ортофосфорной кислоты: НРО 3 + Н 2 О = Н 3 РО 4 .

Диссоциация кислоты идет в водном растворе ступенчато: легче всего отрывается один протон, и возникает дегидрофосфат-анион Н 2 РО 4 - . Фосфорному ангидриду соответствует не одна только ортофосфорная кислота. Оксид фосфора (V) при растворении в воде дает смесь кислот.

Реакции с оксидами металлов

С веществом Р 2 О 5 вступает в реакцию оксид натрия. Оксид фосфора также взаимодействует с аналогичными соединениями при нагревании (сплавлении). Состав получаемых фосфатов зависит от реагентов и условий протекания реакции.
3Na 2 O + Р 2 О 5 = 2Na 3 PO 4 — ортофосфат натрия (средняя соль). Взаимодействие исследуемого вещества со щелочами идет с образованием соли и воды.

Промышленный способ получения фосфорного ангидрида

Производят Р 2 О 5 при сжигании технического фосфора. Это гигроскопичное вещество, поэтому предварительно его осушают. В специальной камере при высокой температуре происходит реакция окисления фосфора до разных форм Р 4 О 10 . Эту белую парообразную массу очищают и применяют как водоотнимающее вещество для осушения различных промышленных газов. Из фосфорного ангидрида получают ортофосфорную кислоту. Метод заключается в восстановлении природного сырья до молекулярного фосфора, его сжигании и растворении в воде продукта горения.

Фосфорные удобрения

«Элемент жизни» играет важную роль в образовании АТФ и белков в клетках, энергетическом обмене в организме растений. Но ежегодно с урожаем из почвы выносится значительная часть элементов питания. Для их восполнения вносят минеральные и органические удобрения. Фосфор — один из трех макроэлементов, кроме него к этой группе относятся азот и калий.

Фосфорные удобрения — суперфосфаты — получают из горных пород и минералов при обработке их кислотами. В последние годы основные усилия туковой отрасли направлены на выпуск сложных и комплексных удобрений. Они содержат несколько элементов питания, что делает их применение экономически более выгодным.

Элемент фосфор образует ряд оксидов, наиболее важными из них являются оксид фосфора (III) P2O3 и оксид фосфора (V) P2O5 .

Оксид фосфора (III), или фосфористый ангидрид (P2O3) получают при медленном окислении фосфора, сжигая его в недостатке кислорода. Представляет собой воскообразную кристаллическую белую массу с температурой плавления 22,5 °C. Ядовит.

Химические свойства:

1) вступает в реакцию с холодной водой, образуя при этом фосфористую кислоту H3PO3;

2) взаимодействуя с щелочами, образует соли – фосфиты;

3) является сильным восстановителем.

Взаимодействуя с кислородом, окисляется до оксида фосфора (V) P2O5.

Оксид фосфора (V), или фосфорный ангидрид (P2O5) получают при горении фосфора на воздухе или в кислороде. Представляет собой белый кристаллический порошок, с температурой плавления 36 °C.

Химические свойства:

1) взаимодействуя с водой, образует орто-фосфорную кислоту H3PO4;

2) имея свойства кислотного оксида, вступает в реакции с основными оксидами и гидроксидами;

3) способен к поглощению паров воды.

Фосфорные кислоты.

Фосфорному ангидриду соответствует несколько кислот. Главная из них – ортофосфорная кислота H3PO4 . Фосфорная кислота обезвоженная представлена в виде бесцветных прозрачных кристаллов, имеющих температуру плавления 42,35 °C и хорошо растворяющихся в воде.

Образует три вида солей:

1) средние соли – ортофосфаты;

2) кислые соли с одним атомом водорода;

3) кислые соли с двумя атомами водорода.

Получение фосфорной кислоты:

1) в лаборатории: 3P + 5HNO3 + 2H2O = 3H3PO4 +5NO?;

2) в промышленности: а) термический метод; б) экстракционный метод: Ca3(PO4)2 + 3H2SO4 = CaSO4? + 2 H3PO4.

Природные фосфаты восстанавливают до свободного фосфора, который сжигают на воздухе, либо в кислороде. Продукт реакции растворяют в воде.

Остальные фосфорные кислоты в зависимости от способа соединения групп PO4 образуют 2 вида кислот: полифосфорные кислоты, которые состоят из цепочек – PO3-О-PO3-... и метафосфорные кислоты, которые состоят из колец, образованных PO4.

Применение: ортофосфорную кислоту используют при производстве удобрений, химических реактивов, органических соединений, для приготовления защитных покрытий на металлах. Фосфаты используют в производстве эмалей и фармацевтике. Метафосфаты входят в состав моющих средств.

– NH4H2PO4 или (NH4)2H2PO4.

Нитрофоска получается при сплавлении гидрофосфата аммония, нитрата аммония и хлорида (сульфата) натрия.

38. Углерод и его свойства

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6. Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа .

Химические свойства: электронная конфигурация: 1s2 2 s2 2p2 . На электронной оболочке атома – 6 электронов; на внешнем валентном уровне – 4 электрона. Наиболее характерные степени окисления: +4, +2 – в неорганических соединениях, – 4, -2 – в органических. Углерод в любом гибридном состоянии способен использовать все свои валентные электроны и орбитали. У 4-валентного углерода нет неподеленных электронных пар и нет свободных орбиталей – углерод химически относительно устойчив. Характерно несколько типов гибридизации: sp, s p2 , s p3. При низких температурах углерод инертен, но при нагревании его активность возрастает. Углерод – хороший восстановитель, но соединяясь с металлами и образуя карбиды , он выступает окислителем:

Углерод (кокс) вступает в реакции с оксидами металлов:

Таким образом выплавляют металл из руды. При очень высоких температурах углерод реагирует со многими неметаллами. Огромное количество органических соединений он образует с водородом – углеводороды. В присутствии никеля (Ni) углерод, реагируя с водородом, образует предельный углеводород – метан: С + Н2 = СН4.

При взаимодействии с серой образует сероуглерод: С + 2S2 = СS2.

При температуре электрической дуги углерод соединяется с азотом, образуя ядовитый газ дициан : 2С + N2 = С2N2?.

В соединении с водородом дициан образует синильную кислоту – НСN. С галогенами углерод реагирует в зависимости от их химической активности, образуя галогениды. На холоде реагирует со фтором: С + 2F2 = СF2.

При 2000 °C в электропечи углерод соединяется с кремнием, образуя карборунд: Si + C = SiC.

Нахождение в природе: свободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО3, доломита – MgCO3?CaCO3; гидрокарбонатов – Mg(НCO3)2 и Са(НCO3)2, СО2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Фосфор открыт гамбургским алхимиком Хеннингом Брандом в 1669 году, хотя существуют данные, что фосфор умели получать еще арабские алхимики в XII в. Подобно другим алхимикам, Бранд пытался отыскать эликсир жизни или философский камень. При нагревании смеси белого песка и выпаренной мочи он получил светящееся в темноте вещество, названное сначала "холодным огнём". Вторичное название "фосфор" происходит от греческих слов "фос" - свет и "феро" - несу. То, что фосфор - простое вещество, доказал Лавуазье.

Нахождение в природе, получение:

Фосфор - один из самых распространённых элементов земной коры, его содержание составляет 0,08-0,09 % её массы. В свободном состоянии не встречается из-за высокой химической активности. Образует около 190 минералов, важнейшими из которых являются апатит Ca 5 (PO 4) 3 F, фосфорит Ca 3 (PO 4) 2 и другие. Фосфор содержится во всех частях зелёных растений, ещё больше его в плодах и семенах. Содержится в животных тканях, входит в состав белков и других важнейших органических соединений (АТФ), является элементом жизни.
Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и песком при температуре 1500°С:
2Ca 3 (PO 4) 2 + 10C + 6SiO 2 = 4P + 10CO + 6CaSiO 3
Образующиеся пары белого фосфора конденсируются в приёмнике под водой. Вместо фосфоритов восстановлению можно подвергнуть и другие соединения, например, метафосфорную кислоту:
4HPO 3 + 12C = 4P + 2H 2 + 12CO

Физические свойства:

Элементарный фосфор в обычных условиях представляет собой несколько устойчивых аллотропных модификаций; вопрос аллотропии фосфора сложен и до конца не решён. Обычно выделяют четыре модификации простого вещества - белую, красную (см. рис.), черную и металлический фосфор. Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные являются разновидностью указанных четырёх. В обычных условиях существует только три аллотропных модификации фосфора.
Белый фосфор , фосфор в жидком и растворенном состоянии, а также в парах до 800°С состоит из молекул P 4 . При нагревании выше 800 °С молекулы диссоциируют: P 4 = 2P 2 . При температуре выше 2000°С молекулы распадаются на атомы.
Красный фосфор имеет формулу (Р 4) n и представляет собой полимер со сложной структурой, имеет оттенки от пурпурно-красного до фиолетового, растворим в расплавленных металлах (Bi, Pb).
Чёрный фосфор - это наиболее стабильная форма, вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, нерастворимое в воде или органических растворителях, полупроводник.

Химические свойства:

Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность резко снижается. Белый фосфор на воздухе светится в темноте, свечение обусловлено окислением паров фосфора до низших оксидов.
При горении белого фосфора образуется фосфорный ангидрид. Фосфор взаимодействует с галогенами и серой, азотной кислотой, со щелочами. Может быть как восстановителем, так и окислителем

Важнейшие соединения:

Оксид фосфора(V) , P 2 O 5 или фосфорный ангидрид - белое кристаллическое вещество. Реальный состав молекулы оксида фосфора (V) соответствует формуле P 4 O 10 . Фосфорный ангидрид жадно поглощает воду, при этом в зависимости от соотношения числа молекул воды и оксида фосфора (V) P 2 O 5 образуется несколько типов фосфорных кислот: мета- и ортофосфорная, дифосфорная , а также большая группа полифосфорных кислот. Сила полифосфорных кислот возрастает с увеличением числа атомов фосфора.
При взаимодействии P 2 O 5 с водой при обычных условиях получается метафосфорная кислота НРO 3:
P 4 O 10 + 2H 2 O = 4НРO 3
а при нагревании водного раствора метафосфорной кислоты образуется ортофосфорная кислота H 3 PO 4:
НРO 3 + H 2 O = H 3 PO 4
Оксид фосфора(III) , P 2 O 3 - бесцветное, кристаллическое, очень ядовитое вещество с неприятным запахом, Тпл 23,8° С. По аналогии с оксидом фосфора (V) образует молекулы P 4 O 6 . С водой образует фосфористые кислоты.
Ортофосфористая кислота , H 3 PO 3 - слабая двухосновная кислота, сильный восстановитель. Ее особенность - только два атома водорода способны замещаться на металл, соли называются фосфитами. При нагревании ее в водном растворе выделяется водород:
H 3 PO 3 + H 2 O = H 3 PO 4 + H 2
Фосфиновая кислота , (устар. фосфорноватистая) H 3 PO 2 , бесцветные кристаллы, расплывающиеся на воздухе и хорошо растворимые в воде, Тпл 26,5° С. В промышленности получается при кипячении белого фосфора с водной суспензией шлама Ca(OH) 2 или Ba(OH) 2 . Образовавшийся гипофосфит кальция обрабатывают сульфатом натрия или раствором серной кислоты с целью получения гипофосфита натрия или свободной кислоты.
Трихлорид фосфора , PCl 3 - жидкость с резким неприятным запахом, дымящая на воздухе. Ткип 75,3° С, Тпл -40,5° С. В промышленности его получают пропусканием сухого хлора через суспензию красного фосфора в PCl 3 .
Пентахлорид фосфора , PCl 5 - светло-желтое с зеленоватым оттенком кристаллическое вещество с неприятным запахом. Кристаллы имеют ионное строение . Твозг 159° С. Получается при взаимодействии PCl 3 с хлором или S 2 Cl 2: 3PCl 3 + S 2 Cl 2 = PCl 5 + 2PSCl 3 .
Водородные соединения : фосфористый водород РН 3 (фосфин) бесцветный газ с характерным запахом чеснока, обычно в качестве примеси он содержит следы более активного дифосфина (P 2 H 4) и поэтому самовоспламеняется на воздухе при комнатной температуре. Получение: 4Р + 3КОН + 3Н 2 O = РН 3 + 3КН 2 РO 2
При этом способе получения кроме газообразного фосфористого водорода образуется также жидкий фосфористый водород, газообразный водород и кислый гипофосфит калия по уравнениям:
6Р+4КОН + 4Н 2 O = Р 2 Н 4 + 4КН 2 РO 2
2Р + 2КОН + 2Н 2 O = Н 2 + 2КН 2 РO 2

Применение:

В настоящее время в спичках белый фосфор не используется (хотя красный до сих пор входит в состав обмазки спичечного коробка), зато соединения фосфора имеют огромное значение в производстве удобрений, ядохимикатов и полупроводниковых соединений.
Белый фосфор ядовит, смертельная доза для человека составляет примерно 0,2 грамма.
...
...

Семенова Н.В.
ХФ ТюмГУ, 561 группа.

2.39 г/см³ Термические свойства Т. плав. 420 о С(Н-форма),569 (О-форма) Т. кип. возгоняется при 359 (Н-форма) °C Энтальпия образования -3010,1 кДж/моль Химические свойства Растворимость в воде реагирует Классификация Рег. номер CAS (P 2 O 5)
(P 4 O 10) Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Пентаокс́ид фосфора , также оксид фосфора(V) (фо́сфорный ангидрид , пятиокись фосфора ) - неорганическое химическое соединение класса кислотных оксидов с формулами P 4 O 10 и P 2 O 5 .

Строение

Пары оксида фосфора(V) имеют состав P 4 O 10 . Твердый оксид склонен к полиморфизму. Существует в аморфном стекловидном состоянии и кристаллическом. Для кристаллического состояния известны две метастабильные модификации пентаоксида фосфора - гексагональная Н-форма (а = 0,744 нм, = 87°, пространств, гр. R3С) и орторомбическая О-форма (а = 0,923 нм, b = 0,718 нм, с = 0,494 нм, пространств, гр. Рпат), а также одна стабильная орторомбическая О-форма (а =1,63 нм, b= 0,814 нм, с =0,526 нм, пространств. гр. Fdd2). Молекулы P 4 O 10 (Н-форма) построены из 4 групп PO 4 в виде тетраэдра, вершины которого занимают атомы фосфора, 6 атомов кислорода располагаются вдоль ребер, а 4 - по оси третьего порядка тетраэдра. Эта модификация легко возгоняется (360°С) и активно взаимодействует с водой. Другие модификации имеют слоистую полимерную структуру из тетраэдров PO 4 , объединенные в 10-членные (О-форма) и 6-членные (О"-форма) кольца. Эти модификации имеют более высокую температуру возгонки (~580°С) и менее химически активны. H-форма переходит в О-форму при 300-360 о C.

Свойства

P 4 O 10 очень активно взаимодействует с водой (H-форма поглощает воду даже со взрывом), образуя смеси фосфорных кислот , состав которых зависит от количества воды и других условий:

\mathsf{P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4}

При сильном нагревании распадается на:

\mathsf{P_4O_{10} \rightarrow P_4O_6 + 2O_2}

Он также способен извлекать воду из других соединений, представляя собой сильное дегидратирующее средство:

\mathsf{4HNO_3 + P_4O_{10} \rightarrow 4HPO_3 + 2N_2O_5} \mathsf{4HClO_4 + P_4O_{10} \rightarrow (HPO_3)_4 + 2Cl_2O_7}

Оксид фосфора(V) широко применяется в органическом синтезе. Он реагирует с амидами , превращая их в нитрилы :

\mathsf{P_4O_{10} + RCONH_2 \rightarrow P_4O_9(OH)_2 + RCN} \mathsf{P_4O_{10} + 12RCOOH \rightarrow 4H_3PO_4 + 6(RCO)_2O}

Оксид фосфора(V) также взаимодействует со спиртами , эфирами, фенолами и другими органическими соединениями. При этом происходит разрыв связей P-О-P и образуются фосфорорганические соединения. Реагирует с NH 3 и с галогеноводородами , образуя фосфаты аммония и оксигалогениды фосфора:

\mathsf{P_4O_{10} + 8PCl_3 + O_2 \rightarrow 12POCl_3}

Напишите отзыв о статье "Оксид фосфора(V)"

Литература

  • Ахметов Н. С. «Общая и неорганическая химия» М.: Высшая школа, 2001
  • Реми Г. «Курс неорганической химии» М.: Иностранная литература, 1963
  • Ф. Коттон, Дж. Уилкинсон «Современная неорганическая химия» М.: Мир, 1969
  • Зефиров Н.С. и др. т.5 Три-Ятр // Химическая энциклопедия. - М .: Большая Российская Энциклопедия, 1998. - 783 с. - ISBN 5-85270-310-9 .

Отрывок, характеризующий Оксид фосфора(V)

– Что ему, черту, делается, меренина здоровенный, – говорили про него.
Один раз француз, которого брал Тихон, выстрелил в него из пистолета и попал ему в мякоть спины. Рана эта, от которой Тихон лечился только водкой, внутренне и наружно, была предметом самых веселых шуток во всем отряде и шуток, которым охотно поддавался Тихон.
– Что, брат, не будешь? Али скрючило? – смеялись ему казаки, и Тихон, нарочно скорчившись и делая рожи, притворяясь, что он сердится, самыми смешными ругательствами бранил французов. Случай этот имел на Тихона только то влияние, что после своей раны он редко приводил пленных.
Тихон был самый полезный и храбрый человек в партии. Никто больше его не открыл случаев нападения, никто больше его не побрал и не побил французов; и вследствие этого он был шут всех казаков, гусаров и сам охотно поддавался этому чину. Теперь Тихон был послан Денисовым, в ночь еще, в Шамшево для того, чтобы взять языка. Но, или потому, что он не удовлетворился одним французом, или потому, что он проспал ночь, он днем залез в кусты, в самую середину французов и, как видел с горы Денисов, был открыт ими.

Поговорив еще несколько времени с эсаулом о завтрашнем нападении, которое теперь, глядя на близость французов, Денисов, казалось, окончательно решил, он повернул лошадь и поехал назад.
– Ну, бг"ат, тепег"ь поедем обсушимся, – сказал он Пете.
Подъезжая к лесной караулке, Денисов остановился, вглядываясь в лес. По лесу, между деревьев, большими легкими шагами шел на длинных ногах, с длинными мотающимися руками, человек в куртке, лаптях и казанской шляпе, с ружьем через плечо и топором за поясом. Увидав Денисова, человек этот поспешно швырнул что то в куст и, сняв с отвисшими полями мокрую шляпу, подошел к начальнику. Это был Тихон. Изрытое оспой и морщинами лицо его с маленькими узкими глазами сияло самодовольным весельем. Он, высоко подняв голову и как будто удерживаясь от смеха, уставился на Денисова.
– Ну где пг"опадал? – сказал Денисов.
– Где пропадал? За французами ходил, – смело и поспешно отвечал Тихон хриплым, но певучим басом.
– Зачем же ты днем полез? Скотина! Ну что ж, не взял?..
– Взять то взял, – сказал Тихон.
– Где ж он?
– Да я его взял сперва наперво на зорьке еще, – продолжал Тихон, переставляя пошире плоские, вывернутые в лаптях ноги, – да и свел в лес. Вижу, не ладен. Думаю, дай схожу, другого поаккуратнее какого возьму.
– Ишь, шельма, так и есть, – сказал Денисов эсаулу. – Зачем же ты этого не пг"ивел?
– Да что ж его водить то, – сердито и поспешно перебил Тихон, – не гожающий. Разве я не знаю, каких вам надо?
– Эка бестия!.. Ну?..
– Пошел за другим, – продолжал Тихон, – подполоз я таким манером в лес, да и лег. – Тихон неожиданно и гибко лег на брюхо, представляя в лицах, как он это сделал. – Один и навернись, – продолжал он. – Я его таким манером и сграбь. – Тихон быстро, легко вскочил. – Пойдем, говорю, к полковнику. Как загалдит. А их тут четверо. Бросились на меня с шпажками. Я на них таким манером топором: что вы, мол, Христос с вами, – вскрикнул Тихон, размахнув руками и грозно хмурясь, выставляя грудь.
– То то мы с горы видели, как ты стречка задавал через лужи то, – сказал эсаул, суживая свои блестящие глаза.
Пете очень хотелось смеяться, но он видел, что все удерживались от смеха. Он быстро переводил глаза с лица Тихона на лицо эсаула и Денисова, не понимая того, что все это значило.
– Ты дуг"ака то не представляй, – сказал Денисов, сердито покашливая. – Зачем пег"вого не пг"ивел?
Тихон стал чесать одной рукой спину, другой голову, и вдруг вся рожа его растянулась в сияющую глупую улыбку, открывшую недостаток зуба (за что он и прозван Щербатый). Денисов улыбнулся, и Петя залился веселым смехом, к которому присоединился и сам Тихон.
– Да что, совсем несправный, – сказал Тихон. – Одежонка плохенькая на нем, куда же его водить то. Да и грубиян, ваше благородие. Как же, говорит, я сам анаральский сын, не пойду, говорит.
– Экая скотина! – сказал Денисов. – Мне расспросить надо…
– Да я его спрашивал, – сказал Тихон. – Он говорит: плохо зн аком. Наших, говорит, и много, да всё плохие; только, говорит, одна названия. Ахнете, говорит, хорошенько, всех заберете, – заключил Тихон, весело и решительно взглянув в глаза Денисова.
– Вот я те всыплю сотню гог"ячих, ты и будешь дуг"ака то ког"чить, – сказал Денисов строго.