Рефераты Изложения История

Многоклеточные животные. Общая характеристика основных классов

Значимым этапом в истории Земли и эволюции жизни стало возникновение многоклеточности. Это дало мощный толчок к увеличению разнообразия живых существ и их развитию. Многоклеточность сделала возможным специализацию живых клеток в пределах одного организма, включая возникновение отдельных тканей и органов. Первые многоклеточные животные, вероятно, появились в придонных слоях мирового океана в конце протерозоя.
Признаками многоклеточного организма считается то, что его клетки должны быть агрегированы, между ними обязательны разделение функций и установление устойчивых специфических контактов. Многоклеточный организм представляет собой жесткую колонию клеток, в которой сохраняется фиксированное их положение на протяжении всей жизни. В процессе биологической эволюции сходные клетки в теле многоклеточных организмов специализировались на выполнении определенных функций, что привело к формированию тканей и органов. Вероятно, в условиях протерозойского Мирового океана, уже содержавшего примитивные одноклеточные организмы, могла происходить самопроизвольная организация одноклеточных организмов в более высокоразвитые многоклеточные колонии.
Можно только догадываться, какими были первые многоклеточные организмы протерозойской эры. Гипотетическим предком многоклеточных организмов могла быть фагоцителла, которая плавала в толще морской воды за счет биения поверхностных клеток – ресничек кинобласта.
Фагоцителла питалась, захватывая взвешенные в среде частички пищи и переваривая их внутренней клеточной массой (фагоцитобласта). Возможно, именно из кинобласта и фагоцитобласта в процессе эволюционного развития произошло все многообразие форм и тканей многоклеточных организмов. Сама фагоцителла обитала в толще воды, но не имела ни рта, ни кишечника, а ее пищеварение было внутриклеточное. Потомки фагоцителлы приспосабливались к многообразным условиям существования при оседании их на морское дно, при перемещении к поверхности или при изменении источников питания. Благодаря этому у первых многоклеточных организмов постепенно появились рот, кишечник и другие жизненно важные органы.
Еще одна распространенная гипотеза происхождения и эволюции многоклеточных организмов – появление трихоплакса как первого примитивного животного. Этот плоский многоклеточный организм, напоминающий ползущую кляксу, до сих пор считается одним из самых загадочных на планете. Он не обладает ни мускулатурой, ни передним и задним концом, ни осями симметрии, ни какими-либо сложными внутренними органами, но при этом способен размножаться половым путем. Особенности строения и поведения трихоплакса, ползающего по субстрату среди микроводорослей, позволили отнести его к категории одного из самых примитивных многоклеточных животных на нашей планете.
Кто бы ни был предком многоклеточных животных, дальнейший ход эволюции в протерозое привел к появлению так называемых гребневиков. Это планктонные животные с рядами гребных пластинок, образованных сросшимися ресничками. В протерозое они перешли от плавания к ползанию по дну, их тело поэтому сплющилось, выделились головной отдел, двигательный аппарат в виде кожно-мускульного мешка, органы дыхания, сформировались выделительная и кровеносная системы. Линней, создатель первой научной системы органического мира, уделил гребневикам очень небольшое внимание, упомянув в своей «Системе природы» один вид гребневиков. В 1829 году вышла в свет первая в мире большая работа, посвященная медузам. Ее автор, немецкий зоолог Эшшольц (Eschscholtz), описал в ней и несколько видов известных ему гребневиков. Он считал их особым классом медуз, который назвал гребневиками (Ctenophora). Это название сохранилось за ними и в настоящее время» («Жизнь животных», под ред. Н. А. Гладкова, А. В. Михеева).
Более 630 млн лет назад на Земле появились губки, которые развились на морском дне, преимущественно на мелководье, а потом опустились в более глубокие воды. Наружный слой тела губок образован плоскими покровными клетками, в то время как внутренний – жгутиковыми клетками. Одним своим концом губка прирастает к какому-либо субстрату – камням, водорослям, поверхности тела других животных.

Первые многоклеточные организмы жили в придонных слоях древнейших морей и океанов, где внешние условия среды потребовали от них расчленения тела на отдельные части, служившие либо для прикрепления к субстрату, либо для питания. Кормились они, главным образом, органическим веществом (детритом), который покрывал донный ил. Хищников тогда практически не было. Некоторые многоклеточные организмы пропускали через себя переполненные питательным веществом верхние слои морского ила либо поглощали живые бактерии и водоросли, которые в нем обитали.
Плоские и кольчатые черви медленно плавали над самым дном или ползали среди осадков, а трубчатые черви лежали среди донных отложений. В протерозойскую эру в морях и водных бассейнах планеты, вероятно, были широко распространены крупные плоские животные в форме блина, обитавшие на илистом дне, разнообразные медузы, плававшие в толще воды, и примитивные иглокожие. На мелководьях расцветали огромные водоросли – вендотении, которые достигали в длину около одного метра и были похожи на морскую капусту.
Большинство живых существ на нашей планете к концу протерозойской эры уже были представлены многоклеточными формами. Их жизнедеятельность сохранилась в виде отпечатков и слепков на некогда мягком иле. В отложениях того периода можно наблюдать следы ползания, проседания грунта, вырытых норок.
Конец протерозойской эры ознаменовался вспышкой разнообразия многоклеточных организмов и появлением животных, существование которых тогда было тесно связано с морем. Огромное количество остатков многоклеточных животных в слоях возрастом 650-700 млн лет даже послужило причиной выделения в протерозое особого периода, получившего название венд. Он продолжался примерно 110 млн лет и охарактеризовался по сравнению с другими эпохами достижением значительного разнообразия многоклеточных животных.
Возникновение многоклеточное способствовало в дальнейшем увеличению разнообразия живых организмов. Она привела к повышению способности организмов создавать в своем теле запас питательных веществ и реагировать на изменения окружающей среды.
для дальнейшей эволюции биосферы. Живые организмы постепенно начали сами изменять форму и состав земной коры, формировать новую оболочку Земли. Можно сказать, что в протерозое жизнь на планете стала важнейшим геологическим фактором.

То есть они различаются по строению и выполняемым функциям.

Энциклопедичный YouTube

    1 / 5

    ✪ Одноклеточные и многоклеточные организмы (рассказывает биолог Евгений Шеваль)

    ✪ Губки. Видеоурок по биологии 7 класс

    ✪ Подцарство многоклеточных. Губки

    ✪ Самый важный момент в истории жизни на Земле

    ✪ Вольвокс. Онлайн подготовка к ЕГЭ по Биологии.

    Субтитры

Отличия от колониальности

Следует отличать многоклеточность и колониальность . У колониальных организмов отсутствуют настоящие дифференцированные клетки, а следовательно, и разделение тела на ткани. Граница между многоклеточностью и колониальностью нечёткая. Например, вольвокс часто относят к колониальным организмам, хотя в его «колониях» есть чёткое деление клеток на генеративные и соматические. Выделение смертной «сомы» А. А. Захваткин считал важным признаком многоклеточности вольвокса. Кроме дифференцировки клеток, для многоклеточных характерен и более высокий уровень интеграции, чем для колониальных форм. Однако некоторые ученые считают многоклеточность более развитой формой колониальности [ ] .

Происхождение

Наиболее древними многоклеточными, известными в настоящее время, являются червеобразные организмы длиной до 12 см, обнаруженные в 2010 году в отложениях формации Francevillian B в Габоне . Их возраст оценивается в 2,1 млрд лет . Возраст около 1,9 млрд лет имеют организмы Grypania spiralis , предположительно эукариотические водоросли длиной до 10 мм, обнаруженные в отложениях железистой формации Негауни в шахте Эмпайр (англ.) русск. недалеко от города Маркетт (англ.) русск. , штат Мичиган .

В целом же многоклеточность возникала в разных эволюционных линиях органического мира несколько десятков раз. По не вполне понятным причинам многоклеточность более характерна для эукариот , хотя среди прокариот тоже встречаются зачатки многоклеточности. Так, у некоторых нитчатых цианобактерий в нитях встречаются три типа четко дифференцированных клеток, а при движении нити демонстрируют высокий уровень целостности. Многоклеточные плодовые тела характерны для миксобактерий .

По современным данным основные предпосылки для появление многоклеточности, а именно:

  • белки-заполнители межклеточного пространства, разновидности коллагена и протеогликана ;
  • «молекулярный клей» или «молекулярные заклёпки» для соединения клеток;
  • сигнальные вещества для обеспечения взаимодействия между клетками,

возникли задолго до появления многоклеточности, но выполняли у одноклеточных другие функции. «Молекулярные заклёпки» предположительно применялись одноклеточными хищниками для захвата и удержания жертвы, а сигнальные вещества - для привлечения потенциальных жертв и отпугивания хищников .

Причиной появления многоклеточных организмов считают эволюционную целесообразность укрупнения размеров особей, которая позволяет более успешно противостоять хищникам, а также поглощать и переваривать более крупную жертву. Однако условия для массового появления многоклеточных появились только в Эдиакарском периоде , когда уровень кислорода в атмосфере достиг величины, позволяющей покрывать увеличивающиеся энергетические расходы на поддержание многоклеточности .

Онтогенез

Развитие многих многоклеточных организмов начинается с одной клетки (например, зиготы у животных или споры в случае гаметофитов высших растений). В этом случае большинство клеток многоклеточного организма имеют одинаковый геном . При вегетативном размножении , когда организм развивается из многоклеточного фрагмента материнского организма, как правило, также происходит естественное клонирование .

У некоторых примитивных многоклеточных (например, клеточных слизевиков и миксобактерий) возникновение многоклеточных стадий жизненного цикла происходит принципиально иначе - клетки, часто имеющие сильно различающиеся генотипы, объединяются в единый организм.

Эволюция

Шестьсот миллионов лет назад, в позднем докембрии (венде), начался расцвет многоклеточных организмов. Удивляет разнообразие вендской фауны: разные типы и классы животных появляются как бы вдруг, но число родов и видов небольшое. В венде возник биосферный механизм взаимосвязи одноклеточных и многоклеточных организмов - первые стали продуктом питания для вторых. Обильный в холодных водах планктон, использующий световую энергию, стал пищей для плавающих и донных микроорганизмов, а также для многоклеточных животных. Постепенное потепление и рост содержания кислорода привели к тому, что эукариоты, включая многоклеточных животных, стали заселять и карбонатный пояс планеты, вытесняя цианобактерии. Начало палеозойской эры принесло две загадки: исчезновение вендской фауны и «кембрийский взрыв» - появление скелетных форм.

Эволюция жизни в фанерозое (последние 545 млн лет земной истории) - процесс усложнения организации многоклеточных форм в растительном и животном мире.

Грань между одноклеточными и многоклеточными

Не существует чёткой грани между одноклеточными и многоклеточными организмами. Многие одноклеточные обладают средствами для создания многоклеточных колоний, в то же время отдельные клетки некоторых многоклеточных организмов обладают способностью к самостоятельному существованию.

Губки

Хоанофлагелляты

Подробное изучение хоанофлагеллят предприняла Николь Кинг из Калифорнийского университета в Беркли.

Бактерии

У многих бактерий, например, стептококков, обнаружены белки, сходные с коллагеном и протеогликаном, однако не образующие канаты и пласты, как у животных. В стенках бактерий обнаружены сахара, входящие в состав протеогликанового комплекса, образующего хрящи.

Эволюционные эксперименты

Дрожжи

В экспериментах по эволюции многоклеточности, проведённых в 2012 году исследователями Университета Миннесоты под руководством Уильяма Рэтклиффа и Майкла Трависано, в качестве модельного объекта служили пекарские дрожжи. Эти одноклеточные грибы размножаются почкованием; по достижении материнской клеткой определённых размеров, от неё отделяется более мелкая дочерняя клетка и становится самостоятельным организмом. Дочерние клетки могут также слипаться друг с другом, образуя кластеры. Исследователи проводили искусственный отбор клеток, входящих в наиболее крупные кластеры. Критерием отбора была скорость оседания кластеров на дно резервуара. Прошедшие фильтр отбора кластеры вновь культивировались, и среди снова отбирались наиболее крупные .

Со временем дрожжевые кластеры начинали вести себя как единые организмы: после ювенильной стадии, когда происходил рост клеток, следовала стадия размножения, в процессе которой кластер делился на большую и малую части. При этом клетки, находившиеся на границе, погибали, позволяя разойтись родительскому и дочернему кластерам .

Эксперимент занял 60 дней. В итоге получились индивидуальные скопления дрожжевых клеток, которые жили и умирали как единый организм .

Сами исследователи не считают эксперимент чистым, так как дрожжи в прошлом имели многоклеточных предков, от которых могли унаследовать некоторые механизмы многоклеточности .

Водоросли Chlamydomonas reinhardtii

В 2013 году группа исследователей Университета Миннесоты под руководством Уильяма Рэтклиффа, ранее известная эволюционными экспериментами с дрожжами , провела аналогичные опыты с одноклеточными водорослями Chlamydomonas reinhardtii . 10 культур этих организмов культивировали в течение 50 поколений, время от времени центрифугируя их и отбирая наиболее крупные кластеры. Через 50 поколений в одной из культур развились многоклеточные скопления с синхронизацией жизненных циклов отдельных клеток. Оставаясь вместе в течение нескольких часов, кластеры затем расходились на отдельные клетки, которые, оставаясь внутри общей слизистой оболочки, начинали делиться и образовывать новые кластеры.

В отличие от дрожжей, хламидомонады никогда не имели многоклеточных предков и не могли унаследовать от них механизмы многоклеточности, тем не менее, в результате искусственного отбора в течение нескольких десятков поколений, примитивная многоклеточность появляется и у них. Однако в отличие от дрожжевых кластеров, которые в процессе почкования оставались единым организмом, кластеры хламидомонад при размножении разделяются на отдельные клетки. Это свидетельствует о том, что механизмы многоклеточности могли возникать независимо в различных группах одноклеточных и варьировать от случая к случаю cellosome ) и представлявшие собой искусственно созданные колонии одноклеточных. Слой дрожжевых клеток наносили на кристаллы арагонита и кальцита , используя в качестве связующего полимерные электролиты, затем кристаллы растворяли кислотой и получали полые замкнутые целлосомы, сохранявшие форму использованного шаблона. В полученных целлосомах дрожжевые клетки сохраняли активность и форму шаблона

Живой мир наполнен головокружительным множеством живых существ. Большинство организмов состоят только из одной клетки и не видимы невооруженным глазом. Многие из них становятся заметными исключительно под микроскопом. Другие, такие как кролик, слон или сосна, а также человек, сделаны из многих клеток, и эти многоклеточные организмы также в огромном количестве населяют весь наш мир.

Строительные блоки жизни

Структурными и функциональными единицами всех живых организмов являются клетки. Их еще называют строительными блоками жизни. Все живые организмы состоят из клеток. Эти структурные единицы были открыты Робертом Гуком еще в 1665 году. В организме человека насчитывается около ста триллионов клеток. Размер одной составляет около десяти микрометров. Ячейка содержит клеточные органеллы, которые контролируют ее активность.

Существуют одноклеточные и многоклеточные организмы. Первые состоят из одной клетки, например бактерии, а вторые включают растения и животных. Количество ячеек зависит от вида. Размер большинства клеток растений и животных клетках составляет от одного до ста микрометров, поэтому они видны под микроскопом.

Одноклеточные организмы

Эти крошечные существа состоят из одной клетки. Амебы и инфузории являются самыми старыми формами жизни, которые существовали еще около 3,8 миллиона лет назад. Бактерии, археи, простейшие, некоторые водоросли и грибы являются основными группами одноклеточных организмов. Существует две основные категории: прокариоты и эукариоты. Они также различаются по размеру.

Самые маленькие составляют около трехсот нанометров, а некоторые могут достигать размеров до двадцати сантиметров. Такие организмы обычно имеют реснички и жгутики, которые помогают им при перемещении. Они имеют простой корпус с базовыми функциями. Размножение может быть как бесполое, так и половое. Питание осуществляется обычно в процессе фагоцитоза, где частицы еды поглощаются и хранятся в специальных вакуолях, которые присутствуют в организме.

Многоклеточные организмы

Живые существа, состоящие из более чем одной клетки, называются многоклеточными. Они состоят из единиц, которые идентифицируются и присоединяются друг к другу, образуя сложные многоклеточные организмы. Большинство из них видны невооруженным глазом. Такие организмы, как растения, некоторые животные и водоросли, появляются из одной клетки и вырастают в многоцепочечные организации. Обе категории живых существ, прокариоты и эукариоты, могут проявлять многоклеточность.

Механизмы возникновения многоклеточности

Существует три теории для обсуждения механизмов, с помощью которых может возникнуть многоклеточность:

  • Симбиотическая теория утверждает, что первая клетка многоклеточного организма возникла из-за симбиоза различных видов одноклеточных, каждый из которых выполняет различные функции.
  • Синцитиальная теория утверждает, что многоклеточный организм не смог бы развиться из одноклеточных существ с несколькими ядрами. Такие простейшие, как инфузория и слизистые грибы, имеют несколько ядер, тем самым поддерживая эту теорию.
  • Колониальная теория утверждает, что симбиоз многих организмов одного и того же вида приводит к эволюции многоклеточного организма. Она была предложена Геккелем в 1874 году. Большинство многоклеточных образований происходит вследствие того, что клетки не могут отделиться после процесса деления. Примерами, подтверждающими эту теорию, являются водоросли вольвокс и эудорина.

Преимущества многоклеточности

Какие организмы - многоклеточные или одноклеточные - имеют больше преимуществ? На этот вопрос ответить достаточно сложно. Многоклеточность организма позволяет ему превышать предельные размеры, увеличивает сложность организма, позволяя дифференцировать многочисленные клеточные линии. Размножение происходит преимущественно половым путем. Анатомия многоклеточных организмов и процессы, которые в них происходят, являются достаточно сложными из-за наличия различных типов клеток, контролирующих их жизнедеятельность. Возьмем, к примеру, деление. Этот процесс должен быть точным и слаженным, чтобы предотвратить ненормальный рост и развитие многоклеточного организма.

Примеры многоклеточных организмов

Как уже говорилось выше, многоклеточные организмы бывают двух видов: прокариоты и эукариоты. К первому относят в основном бактерий. Некоторые цианобактерии, такие как чара или спирогира, являются также многоклеточными прокариотами, иногда их называют еще колониальными. Большинство эукариотических организмов также состоят из множества единиц. Они имеют хорошо развитую структуру тела, и у них есть специальные органы для выполнения определенных функций. Большинство хорошо развитых растений и животных являются многоклеточными. Примерами могут быть практически всех виды голосеменных и покрытосеменных растений. Почти все животные являются многоклечточными эукариотами.

Особенности и признаки многоклеточных организмов

Существует масса признаков, по которым можно с легкостью определить, является ли организм многоклеточным или нет. Среди можно выделить следующие:

  • У них достаточно сложная организация тела.
  • Специализированные функции выполняют различные клетки, ткани, органы или системы органов.
  • Разделение труда в организме может быть на клеточном уровне, на уровне тканей, органов и уровне систем органов.
  • В основном это эукариоты.
  • Травмы или гибель некоторых клеток глобально не влияет на организм: пораженные клетки будут заменены.
  • Благодаря многоклеточности организм может достигать больших размеров.
  • По сравнению с одноклеточными у них большая продолжительность жизненного цикла.
  • Основной тип размножения - половой.
  • Дифференциация клеток свойственна только многоклеточным.

Как растут многоклеточные организмы?

Все существа, от маленьких растений и насекомых до больших слонов, жирафов и даже людей, начинают свой путь как единичные простые клетки, называемые оплодотворенными яйцами. Чтобы вырасти в большой взрослый организм, они проходят через несколько определенных этапов развития. После оплодотворения яйца начинается процесс многоклеточного развития. На протяжении всего пути происходит рост и многократное деление отдельных ячеек. Эта репликация в конечном итоге создает конечный продукт, который является сложным, полностью сформированным живым существом.

Разделение клеток создает ряд сложных моделей, определяющихся геномами, которые являются практически идентичными во всех клетках. Это разнообразие приводит к экспрессии генов, которая контролирует четыре стадии развития клеток и эмбрионов: пролиферацию, специализацию, взаимодействие и движение. Первая включает в себя репликацию многих клеток из одного источника, вторая имеет отношение к созданию клеток с выделенными, определенными характеристиками, третья включает в себя распространение информации между ячейками, а четвертая отвечает за размещение клеток по всему телу для образования органов, тканей, костей и других физических характеристик развитых организмов.

Несколько слов о классификации

Среди многоклеточных существ выделяют две большие группы:

  • беспозвоночные (губки, кольчатые черви, членистоногие, моллюски и другие);
  • хордовые (все животные, у которых есть осевой скелет).

Важным этапом за всю историю планеты стало появление многоклеточности в процессе эволюционного развития. Это послужило мощным толчком для увеличения биологического разнообразия и его дальнейшего развития. Главным признаком многоклеточного организма является четкое распределение клеточных функций, обязанностей, а также установка и налаживание устойчивых и прочных контактов между ними. Другими словами, это многочисленная колония клеток, которая в силах сохранять фиксированное положение на протяжении всего жизненного цикла живого существа.

В основе большинства представлений о возникновении мно­гоклеточных лежит давнее убеждение, что они произошли от ко­лоний Protozoa и что, следовательно, тело одноядерного про­стейшего в морфологическом отношении отвечает отдельной клетке многоклеточного животного. При этом полагают, что в процессе эволюции постепенно развилась новая индивидуаль­ность многоклеточного организма, резкое подчинение ей и по­давление индивидуальности отдельных клеток. Иными словами, метазоон по сравнению с простейшим признается индивидом высшего порядка. Колониальные гипотезы, таким образом, в полном соответствии с клеточной теорией рассматривают клет­ку как элементарную структурную единицу, позволяющую срав­нивать и анализировать организацию всех Protozoa, Metazoa и Metaphyta (многоклеточных растений).

Гипотеза гастреи Э. Геккеля. Первую гипотезу о колониальном происхождении многоклеточных - гипотезу «гастреи» - предло­жил Э. Геккель. В основу этой гипотезы, которую он разрабатывал с начала 70-х гг. XIX в., легла идея о гомологии зародышевых листков у всех многоклеточных животных, высказанная впервые Т. Гексли. Ко времени появления гипотезы гастреи учение о заро­дышевых листках сделало большие успехи благодаря работам Т. Гек­сли, К. Ф. Вольфа, К. Бэра и др. Геккель опирался на достижения эмбриологии своего времени и в частности на исследова­ния А. О. Ковалевского.

Важнейшим «орудием» при создании теории гастреи был био­генетический закон, обоснованный почти одновременно Ф. Мюл­лером и Геккелем в 60-е гг. XIX в. Согласно Геккелю, «онтогения представляет собой краткое повторение филогении, механиче­ски обусловленное функциями наследственности и приспособ­ляемости» (Haeckel, 1874). Он рассматривал так называемые пер­вичные зародышевые листки - эктодерму и энтодерму гаструлы как проявление в онтогенезе соответственных примитивных ор­ганов первобытных предков. Всем прочим начальным стадиям онтогенеза Геккель также приписывал абсолютное рекапитуля-ционное значение. Все характерные стадии дробления "(рис. 12) отвечают, по мнению Геккеля, сходным стадиям филогенеза. Так, яйцу, или цистуле, соответствует одноклеточный предок Cytaea, стадии морулы - предковая форма «морея» и т. п. Особенно важ­ной и широко распространенной в животном мире рекапитуля­цией (т. е. повторением филогенеза в онтогенезе) Геккель считал двухслойную зародышевую стадию - гаструлу. Общего гипоте­тического прародителя всех Metazoa он создал по ее образу и подобию.

Рис.12. Стадии эмбрионального развития кораллового

полипа (по Геккелю)

Первой филогенетической стадией, по Геккелю, был одно­клеточный амебообразный организм. От него произошли все ани-мально питающиеся организмы. Колония одинаковых амебоидных клеток дала затем начало «морее» - плотному шарообразному организму, рекапитуляцию которого в онтогенезе представляет морула. Путем накопления в центре морей жидкости или студе­нистого вещества, вытеснившего клетки на периферию, посте­пенно сформировалась свободноплавающая «бластея» (в онтоге­незе ей отвечает бластула). Клетки бластеи сперва были покрыты псевдоподиями, которые позднее приобрели способность быст­ро двигаться и изгибаться и превратились в жгуты, служащие для плавания.

Следующей очень важной стадией была гастрея, образовавша­яся из бластеи путем выпячивания (инвагинации) стенки тела на переднем полюсе. Наружный клеточный слой гастреи был снаб­жен жгутиками и сохранил функцию движения, внутренний слой стал кишечным. В центральной, кишечной, полости, сообщав­шейся ртом с наружной средой, происходило переваривание за­глоченной добычи. Два эпителиальных слоя гастреи - эктодерма и энтодерма - представляли собой первичные органы, из кото­рых у потомков гастреи возникли все их органы и ткани.

Современных кишечнополостных и губок Геккель рассматри­вал как мало изменившихся потомков гастреи, а стадию гастру­лы - как рекапитуляцию гастреи.

Все многоклеточные, согласно Геккелю, в отличие от про­стейших имеют монофилетическое происхождение и развились от одной прародительской формы - гастреи, произошедшей, в свою очередь, от одноклеточных предков. От гастреи все Metazoa унаследовали первичный кишечник и два первичных зародыше­вых листка, их ткани представляют собой дериваты этих двух листков.

Свою гипотезу Геккель характеризовал как попытку улучшить филогенетические основы естественной классификации и выяс­нить пути развития главных систематических групп животного мира. Действительно, из гипотезы гастреи вытекал ряд существенных выводов для систематики, сравнительной анатомии, эмбриоло­гии и гистологии. Однако самым важным следствием появления гипотезы гастреи было разрушение учения о типах Кювье, все еще господствовавшего в зоологии того времени.

Из гипотезы Геккеля следует, что истинные гомологии орга­нов и их систем возможны у всех потомков гастреи, т. е. у предста­вителей разных типов, тогда как теорией типов эта возможность отрицалась. Так как гаструла у всех Metazoa гомологична, то гомо-логичен всегда и кишечник. Гомологичны, далее, у всех Metazoa и кожные покровы, поскольку всегда имеется слой эпидермиса, служащий источником для развития других кожных слоев - кути­кулы, железистых образований и пр. - и отвечающий эктодерме гастреи. Нервная система всегда развивается из эктодермы и гомо­логична во всех группах животных. Геккель видел также основа­ния для гомологизации выделительных органов, целома и крове­носной системы у тех животных, у которых они имеются. Для органов чувств, скелета и сердца он считал общую гомологию неприемлемой и полагал, что все эти органы развились в разных группах независимо. Он признавал достоверным различное про­исхождение ротового отверстия в разных группах многоклеточ­ных. Бластопор гаструлы, гомологичный рту гастреи, сохраняется во взрослом состоянии у кишечнополостных, у губок (в виде ус­тья) и у низших червей. Рот иглокожих, членистоногих и позво­ночных, по Геккелю, есть новообразование.

Таким образом, Геккель признавал широкие возможности кон­вергентного развития различных важных особенностей в строе­нии животных.

Он считал первичной тканью однослойный жгутиковый эпи­телий, а все прочие ткани - вторичными производными эпите­лия. Эктодерму и энтодерму Геккель считал первичными зароды­шевыми листками. Мезодерма же, по его мнению, возникла в процессе эволюции гораздо позднее, так как в онтогенезе она всегда образуется из эктодермы и энтодермы и, по существу, даже не представляет единого листка, а имеет двойственную природу, слагаясь из пластинок, развившихся независимо из кожно-мус-кульной и кишечномускульной пластинок.

Так как мезодерма всегда развивается из парных зачатков, то, по Геккелю, у разных групп животных она имеет общее проис­хождение и может считаться гомологичной. Первичные зароды­шевые листки у низших - губок и кишечнополостных - в от­личие от таковых у высших типов сохраняются как первичные органы, подобно тому, как это имело место у гипотетической гастреи.

Гипотеза Геккеля долгое время была господствующей, некото­рые крупные зоологи придерживаются ее и теперь. Ее положи­тельная роль в зоологии была чрезвычайно велика, так как она показала единство и общность происхождения всех многоклеточ­ных и тем способствовала прогрессу дарвинизма.

Однако гипотеза гастреи страдает существенными недостатка­ми, которые не укрылись уже от некоторых современников Гек­келя и давали повод для ее резкой критики.

Действительно, гипотеза гастреи не согласуется со многими данными зоологии и должна уступить место более совершенной концепции. Впрочем, учение о протозойных колониальных пред­ках Metazoa, лежащее в основе обобщений Геккеля, целиком со­храняет свое значение и поныне. Вторым «рациональным» зерном гипотезы гастреи следует считать учение о бластее, которое без особенных изменений было воспринято авторами некоторых дру­гих колониальных гипотез.

Известный русский эмбриолог В. В. Заленский (1874) подроб­но рассмотрел первые стадии эмбрионального развития различ­ных животных с точки зрения соответствия их теории гастреи. Главнейшим моментом в онтогенезе животных он считал пер­вую дифференциацию зародышевых листков. Общий ход рассуж­дении В. В. Заленского был таков. В типичных случаях у низших многоклеточных после дробления и стадии морулы формируется двуслойная бескишечная форма - планула. Если же образуется полая шаровидная бластула, то затем в ее полости появляются энтодермальные клетки и возникает стадия (дибластула), впол­не сравнимая с планулой, так как она, по существу, тоже имеет два зародышевых листка и лишена эпителиальной кишки. В тех случаях, когда путем впячивания образуется гаструла с мешковидной кишкой и ртом, мы, на взгляд Заленского, имеем вто­рично измененное развитие, обеспечивающее очень раннее по­явление кишечника и характеризующееся выпадением стадии планулы. Поэтому Заленский думал, что общий предок Metazoa, скорее, должен был обладать признаками планулы, нежели гас­треи. Заленский, фактически, был предшественником И. И. Меч­никова, выдвинувшего известную гипотезу фагоцителлы.

Гипотеза фагоцителлы И.И.Мечникова. Подобно Заленскому, И. И. Мечников подверг гипотезу гастреи резкой критике. В част­ности, он заметил, что идентичности первичной гаструлы у всех Metazoa, принимаемой Геккелем, в действительности не существует. У разных животных эта стадия имеет различные особенности и раз­вивается по-разному, что далеко не всегда можно объяснить вто­ричными причинами. Истинные двуслойные, инвагинационные гаструлы, как этого требует теория гастреи, в действительности крайне редки. В законченном виде гипотеза фагоцителлы И. И. Меч­никова изложена в заключительной главе его монографии «Эмб­риологические исследования над медузами» (1886).

Будучи сторонником колониального происхождения, И. И. Меч­ников, как и Геккель, видел отдаленных предков многоклеточ­ных в жгутиконосцах с животным питанием.

Мечников считал инвагинацию, путем которой образуется гаструла, вторичным способом образования энтодермы, возникшим в результате длительной и сложной эволюции.

Гипотеза И. И. Мечникова состоит в следующем. Первичный метазоон был шаровидным и имел сначала однослойное строе­ние. Иными словами, признается бластея, и в этом - совпадение с гипотезой Геккеля.

Поскольку у Metazoa полость дробления обычно появляется очень рано и зародыш быстро превращается в бластулу, предком многоклеточных Мечников считал бластулообразную колонию жгу­тиконосцев. Он полагал, что тотальное дробление многоклеточ­ных следует выводить из деления жгутиконосцев: первые мериди­ональные деления дробящегося яйца представляют собой наследие от флагелятных предков, поскольку для жгутиконосцев характер­но именно продольное деление. Исходную шарообразную форму колонии Мечников пытается также объяснить исходя из продоль­ного деления жгутиконосцев. Если деление клетки все время про­исходит продольно, то получается пластинка, но если третье де­ление изменится, станет поперечным, то в результате возникает шаровидная колония клеток. Именно такое изменение направле­ния деления и произошло в филогенезе. Таким образом, предком Metazoa была колония, у которой направления деления чередо­вались в трех координатных плоскостях. Мечников думал, что образование двуслойной стадии произошло не путем впячива-ния, а путем иммиграции - внедрения отдельных клеток в по­лость бластулы, в результате чего образовался зачаток энтодер­мы. Эволюционные истоки такой иммиграции он видел в явлении фагоцитоза.

Питание первичного метазоона, по Мечникову, совершалось теми же клетками, которые служили для движения, т. е. жгутико­выми клетками путем внутриклеточного пищеварения (фагоцитоза). И. И. Мечников предположил, что перегруженные пищей клетки легко теряли жгутик и уходили в полость организма, за­тем они снова могли выходить на поверхность и формировать жгутик. Так получилась первая факультативная дифференциация на наружный слой клеток - «кинобласт» - и на внутреннюю клеточную массу - «фагоцитобласт». Эта дифференциация затем закрепилась в эволюции, и образовался компактный организм - паренхимелла, моделью которого он считал личинку губок - паренхимуллу. Позднее Мечников назвал этот организм фагоцител-лой. Это и был общий предок многоклеточных животных.

Дальнейшая судьба фагоцителлы такова. Некоторые ее потом­ки перешли к сидячему образу жизни и дали начало губкам. Дру­гие стали ползать, приобрели билатеральную симметрию и рото­вое отверстие.От них произошли бескишечные плоские черви турбеллярии, у которых еще нет кишечника и пищеварение со­вершается в лакунах паренхимы и в блуждающих клетках - фаго­цитах. Третьи, сохранив плавающий образ жизни, приобрели рот, испытали эпителизацию фагоцитобласта и превратились в пер­вичных кишечнополостных - родоначальников сидячих полипов.

Таким образом, гипотеза И. И. Мечникова объясняла с эволю­ционной точки зрения все главные этапы онтогенеза Metazoa и предлагала новые филогенетически обоснованные представления о первичных зародышевых листках и их дальнейшей эволюции. На этой основе Мечников нарисовал вполне правдоподобную гипоте­тическую картину эволюционного становления Metazoa и первых этапов их филогенетического развития, картину, которая хорошо объясняет множество эмбриологических и сравнительно-анатоми­ческих факторов, непонятных с точки зрения других гипотез.

А. А. Захваткин в 1949 г. выдвинул гипотезу о происхождении многоклеточных от колониальных жгутиконосцев на основе па-линтомии - особой формы бесполого размножения путем после­довательных делений клетки без стадий роста получающихся до­черних клеток. Такое деление является, по его мнению, прообразом дробления яйца у Metazoa.

Другой путь эволюционного формирования Metazoa предложил А. В. Иванов в конце 60-х гг., считавший, что гипотетические ис­ходные колонии жгутиконосцев не были палинтомическими и во­обще мало отличались от шаровидных колоний современных во-ротничковых жгутиконосцев.

Иванов принимает за основу теорию фагоцителлы Мечникова. Однако прообразом фагоцителлы он считает не личинку губок, а примитивное плоское многоклеточное трихоплакс, являющееся единственным представителем типа Пластинчатые (Placozoa). Схема возникновения многоклеточных, согласно Иванову, представле­на на рис. 13.

Рис. 13. Главнейшие предполагаемые стадии филогенеза Metazoa

по А. В. Иванову:

1 - колония жгутиконосцев; Б - миграция клеток жгутиконосцев внутрь; В - ранняя фагоцителла; Г - поздняя фагоцителла; Д - первичная турбеллярия - появление рта и билатеральной симметрии; Е - примитивная бескишечная тур­беллярия - усиление дифференциации клеток, смещение рта на брюшную сто­рону; Ж - примитивная губка - переход к сидячему образу жизни, замена локомоторной функции киноцитов гидрокинетической; 3 - первичное кишеч-нополостное типа гастреи - образование рта, эпителизация фагоцитобласта

Поскольку в эмбриогенезе низших многоклеточных двуслой­ных зародыш образуется чаще путем иммиграции, большинство зоологов считают, что именно таким путем и шло преобразова­ние шаровидной колонии жгутиконосцев в первый многокле­точный организм. При этом у предковых форм многоклеточных образование двух клеточных слоев сопровождалось специализа­цией клеток и колония жгутиконосцев превратилась в единый многоклеточный организм. Наружный слой сохранил двигатель­ную и чувствительную функции, а внутренний - пищеваритель­ную и половую.

На Земле лишь самые простые существа состоят из одной клетки. Все сложно организованные растения, животные и грибы состоят из нескольких клеток, и у большинства многоклеточных организмов клеток действительно очень много.
Переход к дыханию кислородом вызвал необходимость того, чтобы весь кислород доходил до всех клеток. Но вначале кислорода было довольно мало, так что его было недостаточно для проникновения в глубь клеточных слоев. И лишь когда деятельность фотосинтезирующих одноклеточных привела к тому, что атмосфера Земли насытилась кислородом, появились многоклеточные организмы.
Узнать, какова была концентрация кислорода в прошлом, позволяют геологические изыскания. Некоторые минералы не могут существовать в атмосфере, богатой кислородом, и, если бы их удалось обнаружить в каком-нибудь слое земной коры, то это означало бы, что кислорода в те времена было довольно мало. Хотя жизнь возникла довольно давно, первые многоклеточные существа появились чуть более одного миллиарда лет назад. Это были растения.
Многоклеточные животные появились еще позже - 600 миллионов лет назад. Как ни странно, это были крупные существа, напоми-

Пейзаж времен палеозоя

нающие медуз. В те времена на всей планете не было ни одного хищника.
По всей видимости, первые многоклеточные существа не стали предками современных многоклеточных организмов, видимо, многоклеточные существа возникали не один раз. Первые существа с твердым скелетом появились около 540 миллионов лет назад. Об этих организмах мы знаем гораздо больше, их облик известен нам гораздо лучше, чем внешний вид самых древних организмов, ведь по скелету -
неважно, раковине, панцирю или кости - можно представить то существо, чьей частью он был.
Поскольку до момента появления скелета ясных отпечатков не оставалось, все, что происходило до этого, назвали эрой скрытой жизни, или криптозоем, а все, что произошло потом, - палеозоем. Скелет стал настоящей революцией. Это опора, а значит движение, высокий рост, защита, возможность противостоять силе тяжести на суше и завоевать новые пространства.
Нужно помнить, что суша в то время была безжизненной, и все живое существовало лишь в океане. Что же вызвало появление скелета у древних организмов? Вероятно, увеличение количества кислорода позволило вести более активную жизнь. Активность привела к быстрому накоплению твердых отходов в организме и развитию скелета.
Некоторые организмы образовывали колонии таких размеров, что меняли облик древних водоемов. Это известковые водоросли и губки.
Вероятно, первыми существами, которые начали уничтожать других, стали головоногие моллюски, к которым относятся современные осьминоги, каракатицы и кальмары.
Несмотря на то что позвоночные животные появились тоже достаточно давно, они занимали не самые почетные места в древнем раскладе сил. Бесчелюстные панцирные - пред
ки рыб, уже были похожи на рыб, которых мы едим или разводим в аквариумах. Панцирь покрывал и бесчелюстных, и первых настоящих рыб. Но рыбы обрели привычный для нас облик лишь миллионы лет спустя.

Еще по теме КАК ВОЗНИКЛИ МНОГОКЛЕТОЧНЫЕ ОРГАНИЗМЫ?:

  1. КАК ВОЗНИКЛА ИДЕЯ БИЗНЕСА И СОУЧРЕДИТЕЛИ ПОЗНАКОМИЛИСЬ ДРУГ С ДРУГОМ
  2. 6. Поздний докембрий: возникновение многоклеточности. Гипотеза кислородного контроля. Эдиакарский эксперимент.