Рефераты Изложения История

Какая картина наблюдается при интерференции света. Интерференционные картины

  • 3.3. Вращение твердого тела вокруг неподвижной оси, его момент инерции и кинетическая энергия.
  • 3.4. Момент импульса. Закон сохранения момента импульса. Второй закон динамики для вращательного движения.
  • Лекция № 4
  • 4.1. Описание движения жидкости и газа. Вязкость жидкостей и газов.
  • 4.2. Уравнение неразрывности.
  • 4.3. Уравнение Бернулли и выводы из него
  • Лекция №5
  • 5.1. Гармонические колебания.
  • 5.2. Сложение гармонических колебаний.
  • 5.3. Сложение перпендикулярных колебаний.
  • 5.4. Дифференциальное уравнение колебаний.
  • 5.5. Энергетические соотношения в колебательных процессах.
  • 5.6. Колебания математического и физического маятников
  • 5.7. Уравнение вынужденных колебаний. Резонанс
  • Лекция №6
  • 6.1.Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны.
  • 6.2. Энергия волны
  • 6.3. Упругие волны в твердом теле
  • Лекция №7
  • 7.1. Основные положения мкт.
  • Агрегатные состояния вещества
  • 7.2. Опытные законы идеального газа
  • Закон Авогадро
  • 7.3. Уравнение состояния идеального газа
  • 7.4. Основное уравнение молекулярно-кинетической теории идеального газа.
  • 7.5. Закон Максвелла для распределения молекул по скоростям.
  • 7.6. Барометрическая формула. Распределение Больцмана
  • Лекция №8
  • 8.2. Столкновения молекул и явления переноса в идеальном газе
  • 8.3. Среднее число столкновений и среднее время свободного пробега молекул
  • 8.4.Средняя длина свободного пробега молекул
  • 8.5. Диффузия в газах
  • 8.6. Вязкость газов
  • 8.7. Теплопроводность газов
  • 8.8. Осмос. Осмотическое давление
  • Лекция №9
  • 9.1.Распределение энергии по степеням свободы молекул
  • 9.2. Внутренняя энергия
  • 9.3. Работа газа при его расширении
  • 9.4. Первое начало термодинамики
  • 9.5. Теплоемкость. Уравнение Майера
  • 9.6. Адиабатный процесс
  • 9.7. Политропический процесс
  • 9.8. Принцип действия тепловой машины. Цикл Карно и его кпд.
  • 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.
  • 9.10. Второе начало термодинамики и его статистический смысл.
  • Лекция №10
  • 10.1. Реальные газы, уравнение Ван-дер-Ваальса.
  • Уравнение Ван-дер-Ваальса неплохо качественно описывает поведение газа при сжижении, но непригодно к процессу затвердевания.
  • 10.2.Основные характеристики и закономерности агрегатных состояний и фазовых переходов.
  • Фазовые переходы второго рода. Жидкий гелий. Сверхтекучесть
  • 10.3. Поверхностное натяжение жидкости. Давление Лапласа.
  • 10.4. Капиллярные явления
  • 10.5. Твёрдые тела
  • Дефекты в кристаллах
  • Тепловые свойства кристаллов
  • Жидкие кристаллы
  • Лекция №11
  • 11.1. Электрические свойства тел. Электрический заряд. Закон сохранения заряда
  • 11.2. Закон Кулона
  • 11.3. Электростатическое поле. Напряженность электрического поля. Силовые линии поля.
  • 11.4. Электрический диполь
  • 11.5. Поток вектора напряженности. Теорема Остроградского-Гаусса
  • 11.6. Работа сил электростатического поля по перемещению зарядов.
  • 11.6. Потенциал. Разность потенциалов. Потенциал точечного заряда, диполя, сферы.
  • 11.7. Связь между напряженностью электрического поля и потенциалом
  • 11.8. Типы диэлектриков. Поляризация диэлектриков.
  • 11.9. Теорема Остроградского-Гаусса для поля в диэлектрике. Связь векторов - сме­щения, - напряженности и - поляризованности
  • 11.10. Проводники в электростатическом поле
  • 11.11. Проводник во внешнем электростатическом поле. Электрическая емкость
  • 11.12. Энергия заряженного проводника, системы проводников и конденсатора
  • Лекция №12
  • 12.1. Электрический ток. Сила и плотность тока.
  • 12.3. Закон Ома для однородного участка цепи. Сопротивление проводников.
  • 12.4. Закон Ома для неоднородного участка цепи
  • 12.5. Закон Джоуля – Ленца. Работа и мощность тока.
  • 12.6. Правила Кирхгофа
  • Лекция №13
  • 13.1. Классическая теория электропроводности металлов
  • 13.2. Термоэлектронная эмиссия. Электрический ток в вакууме.
  • 13.3. Электрический ток в газах. Виды газового разряда.
  • Самостоятельный газовый разряд и его типы
  • Лекция №14
  • 14.1. Магнитное поле. Магнитное взаимодействие токов. Закон Ампера. Вектор магнитной индукции.
  • 14.2. Закон Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов.
  • 14.3. Циркуляция вектора магнитной индукции. Поле соленоида и тороида
  • 14.4. Магнитный поток. Теорема Гаусса
  • 14.5. Работа перемещения проводника и рамки с током в магнитном поле
  • 14.6. Действие магнитного поля на движущийся заряд. Сила Лоренца
  • 14.7. Магнитное поле в веществе. Намагниченность и напряженность магнитного поля.
  • 14.8. Закон полного тока для магнитного поля в веществе
  • 14.9. Виды магнетиков
  • Лекция 15
  • 15.1. Явление электромагнитной индукции.
  • 15.2. Явление самоиндукции
  • 15.3. Энергия магнитного поля
  • 15.4. Электромагнитная теория Максвелла.
  • 1) Первое уравнение Максвелла
  • 2) Ток смешения. Второе уравнение Максвелла
  • 3)Третье и четвертое уравнения Максвелла
  • 4)Полная система уравнений Максвелла в дифференциальной форме
  • 15.5. Переменный ток
  • Лекция № 16
  • 16.1. Основные законы геометрической оптики. Полное внутренне отражение света.
  • 16.2. Отражение и преломление света на сферической поверхности. Линзы.
  • 16.3. Основные фотометрические величины и их единицы
  • 17.1.Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути и оптическая разность хода лучей.
  • 17.2. Способы получения интерференционных картин.
  • 17.3. Интерференция в тонких пленках.
  • 17.4. Просветление оптики
  • 17.5. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Дифракционная решетка. Дифракция на пространственной решетке. Формула Вульфа-Бреггов
  • 17.6. Дифракция Френеля от простейших преград.
  • 17.7. Дифракция в параллельных лучах (дифракция Фраунгофера)
  • 17.8. Дифракция на пространственных решетках. Формула Вульфа-Бреггов.
  • 17.9. Поляризация света. Естественный и поляризованный свет.
  • 17.10. Поляризация света при отражении и преломлении. Закон Брюстера.
  • 17.11.Поляризация при двойном лучепреломлении.
  • 17.12. Вращение плоскости поляризации.
  • 17.13. Дисперсия света. Поглощение (абсорбция) света.
  • Лекция №18
  • 18.1. Квантовая природа излучения. Тепловое излучение и его характеристики. Закон Кирхгофа. Законы Стефана-Больцмана и Вина.
  • 18.2.Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
  • 18.3. Масса и импульс фотона. Давление света. Эффект Комптона.
  • Лекция №19
  • 19.2.Линейчатый спектр атома водорода.
  • 19.3. Постулаты Бора. Опыты Франка и Герца.
  • Лекция №20
  • 20.1.Атомное ядро.
  • 20.2.Ядерные силы.
  • 20.3.Энергия связи ядер. Дефект массы.
  • 20.4.Реакции деления ядер.
  • 2.5.Термоядерный синтез.
  • 20.6.Радиоактивность. Закон радиоактивного распада.
  • План-график самостоятельной работы
  • План-график проведения лабораторно-практических занятий
  • Перечень вопросов для подготовки к коллоквиуму Механика
  • Формулы
  • Определения
  • Вопросы к экзамену
  • Правила и образец оформления лабораторной работы
  • 17.2. Способы получения интерференционных картин.

    Существует ряд способов получения интерференционных картин: Метод Юнга, зеркала Френеля, бипризма Френеля и т.д. Рассмотрим подробно метод Юнга.

    Источником сета служит ярко освещенная щель S (рис.17.3), от которой световая волна падает на две узкие равноудаленные щели и, параллельные щелиS . Таким образом, щели играют роль когерентных источников. Интерференционная картина наблюдается на экране (Э ), расположенном на некотором расстоянии от щелей и. В такой постановке Юнг осуществил первое наблюдение интерференции.

    17.3. Интерференция в тонких пленках.

    Пластинка постоянной толщины. При падении световой волны на тонкую прозрачную пластинку (или пленку) происходит отражение от обеих поверхностей пластинки. В результате возникают две световые волны, которые при определенных условиях могут интерферировать.

    Пусть на прозрачную плоскопараллельную пластинку падает плоская световая волна (параллельный пучок света) (рис.17.4). В результате отражений от поверхностей пластинки, часть света возвращается в исходную среду.

    В любую точку P, находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину.

    Для определения вида полос можно представить себе, что лучи выходят из мнимых изображений S 1 и S 2 источника S , создаваемых поверхностями пластинки. На удаленном экране, расположенном параллельно пластинке, интерференционные полосы имеют вид концентрических колец с центрами на перпендикуляре к пластинке, проходящем через источник S . Этот опыт предъявляет менее жесткие требования к размерам источника S , чем рассмотренные выше опыты. Поэтому можно в качестве S применить ртутную лампу без вспомогательного экрана с малым отверстием, что обеспечивает значительный световой поток. С помощью листочка слюды (толщиной 0,03 – 0,05 мм) можно получить яркую интерференционную картину прямо на потолке и на стенах аудитории. Чем тоньше пластинка, тем крупнее масштаб интерференционной картины, т.е. больше расстояние между полосами.

    Полосы равного наклона. Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения P находится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы (рис. 17.5).

    В этом случае оба луча, идущие от S к P , порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC :

    Здесь n – показатель преломления материала пластинки. Предполагается, что над пластинкой находится воздух, т.е. . Так как
    ,
    (h – толщина пластинки, и– углы падения и преломления на верхней грани;
    ), то для разности хода получаем

    Следует также учесть, что при отражении волны от верхней поверхности пластинки в соответствии с формулами Френеля ее фаза изменяется на π. Поэтому разность фаз δ складываемых волн в точке P равна:

    ,

    где– длина волны в вакууме.

    В соответствии с последней формулой светлые полосы расположены в местах, для которых
    , гдеm порядок интерференции . Полоса, соответствующая данному порядку интерференции, обусловлена светом, падающим на пластинку под вполне определенным углом α. Поэтому такие полосы называют интерференционными полосами равного наклона. Если ось объектива расположена перпендикулярно пластинке, полосы имеют вид концентрических колец с центром в фокусе, причем в центре картины порядок интерференции максимален.

    Полосы равного наклона можно получить не только в отраженном свете, но и в свете, прошедшем сквозь пластинку. В этом случае один из лучей проходит прямо, а другой – после двух отражений на внутренней стороне пластинки. Однако видимость полос при этом низкая.

    Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона (рис.17.6). Рассмотрим схему интерферометра Майкельсона: з1 и з2 – зеркала. Полупрозрачное зеркало посеребрено и делит луч на две части – луч 1 и 2. Луч 1, отражаясь от з1 и проходя, дает, а луч 2, отражаясь от з2 и далее от, дает. Пластинкииодинаковы по размерам.ставится для компенсации разности хода второго луча. Лучиикогерентны и интерферируют.

    Полосы равной толщины (интерференция от клина). Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называют полосами равной толщины . В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок . Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п.

    Рассмотрим интерференционную картину, получаемую от пластинок переменной толщины (от клина).

    Направления распространения световой волны, отраженной от верхней и нижней границы клина, не совпадают (рис.17.7). Отраженные и преломленные лучи встречаются, поэтому интерференционную картину при отражении от клина можно наблюдать и без использования линзы, если поместить экран в плоскость точек пересечения лучей (хрусталик глаза помещают в нужную плоскость).

    Интерференция будет наблюдаться только во 2-й области клина, так как в 1-й области оптическая разность хода будет больше длины когерентности.

    Результат интерференции в точках и экрана определяется по известной формуле,подставляя в неё толщину пленки в месте падения луча (или). Свет обязательно должен быть параллельным (): если одновременно будут изменяться два параметраb и α, то устойчивой интерференционной картины не будет.

    Поскольку разность хода лучей, отразившихся от различных участков клина, будет неодинаковой, освещенность экрана будет неравномерной, на экране будут темные и светлые полосы (или цветные при освещении белым светом, как показано на рис.17.8). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, поэтому их называют полосами равной толщины .

    Кольца Ньютона. На рис.17.9 изображена оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают.

    Так выглядит эксперимент, в XVII веке положивший начало современной оптике. Ньютон подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света.

    Кольцевые полосы равной толщины , наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла называют кольцами Ньютона .

    Общий центр колец расположен в точке касания. В отраженном свете центр темный, так как при толщине воздушной прослойки, на много меньшей, чем длина волны , разность фаз интерферирующих волн обусловлена различием в условиях отражения на двух поверхностях и близка к π. Толщина h воздушного зазора связана с расстоянием r до точки касания:

    .

    Здесь использовано условие
    . При наблюдении по нормали темные полосы, как уже отмечалось, соответствуют толщине
    , поэтому для радиусаm -го темного кольца получаем

    (m = 0, 1, 2, …).

    Если линзу постепенно отодвигать от поверхности стекла, то интерференционные кольца будут стягиваться к центру. При увеличении расстояния на картина принимает прежний вид, так как место каждого кольца будет занято кольцом следующего порядка. С помощью колец Ньютона, как и в опыте Юнга, можно сравнительно простыми средствами приближенно определить длину волны света.

    Итак, полосы равного наклона получаются при освещении пластинки постоянной толщины рассеянным светом , в котором содержатся лучи разных направлений. Полосы равной толщины наблюдаются при освещении пластинки переменной толщины (клина) параллельным пучком света . Полосы равной толщины локализованы вблизи пластинки.

    "

    ИНТЕРФЕРЕНЦИОННАЯ КАРТИНА

    ИНТЕРФЕРЕНЦИОННАЯ КАРТИНА

    Регулярное чередование областей повыш. и пониж. интенсивности света, получающееся в результате наложения когерентных световых пучков, т. е. в условиях постоянной (или регулярно меняющейся) разности фаз между ними (см. ИНТЕРФЕРЕНЦИЯ СВЕТА). Для сферич. макс. интенсивность наблюдается при разности фаз, равной чётному числу полуволн, а минимальная - при разности фаз, равной нечётному числу полуволн. (см. ПОЛОСЫ РАВНОЙ ТОЛЩИНЫ).

    Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .


    Смотреть что такое "ИНТЕРФЕРЕНЦИОННАЯ КАРТИНА" в других словарях:

      интерференционная картина - Распределение интенсивности света, получающееся в результате интерференции, в месте ее наблюдения. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… …

      интерференционная картина - interferencinis vaizdas statusas T sritis fizika atitikmenys: angl. fringe pattern; interference figure; interference image vok. Interferenzbild, n rus. интерференционная картина, f pranc. image d’interférences, f; image interférentielle, f … Fizikos terminų žodynas

      дифракционная картина - Интерференционная картина, возникающая при интерференции света, дифрагировавшего на оптических неоднородностях. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.]… … Справочник технического переводчика

      - (от греч. hólos весь, полный и...графия) метод получения объёмного изображения объекта, основанный на интерференции волн. Идея Г. была впервые высказана Д. Габором (Великобритания, 1948), однако техническая реализация метода оказалась… …

      Измерительный прибор, в котором используется Интерференция волн. Существуют И. для звуковых и для электромагнитных волн: оптических (ультрафиолетовой, видимой и инфракрасной областей спектра) и радиоволн различной длины. Применяются И.… … Большая советская энциклопедия

      Интерференция света опыт Юнга Интерференция света перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве ма … Википедия

      Энциклопедия «Авиация»

      интерференционный метод исследования - Рис. 1. Принципиальная схема установки. интерференционный метод исследования — один из основных оптических методов исследования течений. Характерные особенности И. м. и.: а) использование в интерференционных приборах двух когерентных… … Энциклопедия «Авиация»

      Раздел физики, в котором рассматриваются все явления, связанные со светом, включая инфракрасное и ультрафиолетовое излучение (см. также ФОТОМЕТРИЯ; ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ). ГЕОМЕТРИЧЕСКАЯ ОПТИКА Геометрическая оптика основывается на… … Энциклопедия Кольера

      Это статья об интерференции в физике. См. также Интерференция и Интерференция света Картина интерференции большого количества круговых когерентных волн, в зависимости от длины волны и расстояния между источниками Интерференция волн взаимное … Википедия

    Рассмотрим и опишем интерференционную картину для гармонических волн.

    Пусть источники S t и S 2 являются когерентными и получены одним из перечисленных методов.

    Рассмотрим две цилиндрические когерентные световые волны, исходящие из источников S t и S 2 , имеющих вид параллельных тонких светящихся нитей либо узких щелей (рис.5.4). Область, в которой эти волны перекрываются, называется полем интерференции. Во всей этой области наблюдается чередование мест с максимальной и минимальной интенсивностью света. Если в поле интерференции внести экран, то на нем будет видна интерференционная картина, которая имеет вид чередующихся светлых и темных полос. Вычислим ширину этих полос в предположении, что экран параллелен плоскости, проходящей через источники S 1 и S 2 . Положение точки на экране будем характеризовать координатой х, отсчитываемой в направлении, перпендикулярном к линиям S 1 и S 2 .. Начало отсчета выберем в точке О, относительно которой S 1 и S 2 . расположены симметрично. Источники будем считать колеблющимися в одинаковой фазе. Из рис. 5.4 видно, что

    Следовательно,

    Ниже будет выяснено, что для получения различимой интерференционной картины расстояние между источниками d должно быть значительно меньше расстояния до экрана l. Расстояние х, в пределах которого образуются интерференционные полосы, также бывает значительно меньше l. При этих условиях можно положить , тогда

    Умножив s 2 -s 1 на показатель преломления среды n, получим оптическую разность хода

    Подстановка этого значения разности хода в условие максимума

    дает, что максимумы интенсивности будут наблюдаться при значениях х, равных

    Здесь - длина волны в среде, заполняющей пространство между источниками и экраном.

    Подставив значение (5.1) в условие

    получим координаты минимумов интенсивности:

    Назовем расстояние между двумя соседними максимумами интенсивности расстоянием между интерференционными полосами, а расстояние между соседними минимумами интенсивности - шириной интерференционной полосы. Из формул (5.2) и (5.3) следует, что расстояние между полосами и ширина полосы имеют одинаковое значение, равное

    Согласно формуле (5.4) расстояние между полосами растет с уменьшением расстояния между источниками d. При d, сравнимом с l расстояние между полосами было бы того же порядка, что и l т. е. составляло бы несколько десятых мкм. В этом случае отдельные полосы были бы совершенно неразличимы. Для того чтобы интерференционная картина стала отчетливой, необходимо соблюдение упоминавшегося выше условия: d<

    Если свет, исходящий от одного источника, разделить определенным образом, например, на два пучка, а потом наложить их друг на друга, то интенсивность в области суперпозиции пучков будет изменяться от одной точки к другой. При этом в одних точках достигается максимум интенсивности, который больше, чем сумма интенсивностей двух этих пучков, и минимума, где интенсивность равна нулю. Данное явление называют интерференцией света. Если накрадывающиеся пучки света являются строго монохроматическими, то интерференция возникает всегда. Это, конечно не может относится к реальным источникам света, так как они не бывают строго монохроматическими. Амплитуда и фаза естественного источника света подвержена непрерывным флуктуациям, причем они происходят очень быстро так, что человеческий глаз или примитивный физический детектор не могут зафиксировать эти изменения. В пучках света, которые исходят от разных источников, флуктуации абсолютно не зависимы, про такие пучки говорят, что они взаимно некогерентны. При наложении таких источников интерференции не наблюдается, полная интенсивность равняется сумме интенсивностей отдельных пучков света.

    Методы получения интерферирующих пучков света

    Выделяют два общих метода получения пучков света, которые могут интерферировать. Эти методы лежат в основе классификации устройств, которые используют в интерферометрии.

    В первом из них пучок света делится при прохождении через отверстия, которые расположены близко друг от друга. Этот метод называют методом деления волнового фронта. Он применим только, если использовать малые источники света.

    Первая экспериментальная установка для демонстрации интерференции света была сделана Юнгом. В его опыте свет от точечного монохроматического источника падал на два малых отверстия в непрозрачном экране, которые располагались недалеко друг от друга на одинаковых расстояниях от источника света. Данные отверстия в экране становились вторичными источниками света, световые пучки, исходящие от которых можно было считать когерентными. Пучки света от этих вторичных источников перекрываются, наблюдается интерференционная картина в области их перекрытия. Интерференционная картина состоит из совокупности светлых и темных полос, которые называют интерференционными полосами. Они находятся на равных расстояниях друг от друга и направлены под прямым углом к линии, которая соединяет вторичные источники света. Полосы интерференции можно наблюдать в любой плоскости области перекрытия расходящихся пучков от вторичных источников. Такие интерференционные полосы называют нелокализованными.

    Во втором способе пучок света делят при помощи одной или нескольких поверхностях, которые частично отражают, и частично пропускают свет. Данный метод называют методом деления амплитуды. Он может использоваться для протяженных источников. Плюс его в том, что с его помощью получают большую интенсивность, чем метод деления фронта.

    Картину интерференции, которую получают делением амплитуды, можно получить, если плоскопараллельную пластинку из прозрачного материала освещать светом от точечного источника квазимонохроматического света. При этом в любую точку, которая находится с той же стороны, что и источник света приходят два луча. Одни из них отразился от верхней поверхности пластины, другой отразился от ее нижней поверхности. Отраженные лучи интерферируют и составляют интерференционную картину. При этом полосы в плоскостях, которые параллельны пластинке, имеют вид колец, с осью, нормальной к пластине. Видность таких колец уменьшается при росте размера источника света. Если точка наблюдения находится в бесконечности, тогда наблюдение ведут глазом, который адаптирован на бесконечность или в фокальной плоскости объектива телескопа. Лучи, отраженные от верхней и нижней поверхностей пластинки параллельны. Полосы, возникающие в результате интерференции лучей, падающих на пленку под одинаковыми углами, носят названия полос равного наклона. (Подробнее об интерференции в плоскопараллельной пластине см. раздел «Интерференция в тонких пленках»)

    Примеры решения задач

    ПРИМЕР 1

    Задание Каково положение второй светлой полосы в опыте Юнга, если расстояние между щелями равно b, расстояние от щелей до экрана l. Щели освещают монохроматическим светом с длиной воны равной .
    Решение Изобразим ситуацию прохождения света от отверстий ( и ) до экрана в опыте Юнга (рис.1). Экран параллелен плоскости, в которой расположены отверстия.

    Разность хода лучей найдем, опираясь на рис.1:

    Условие максимума для интерферирующих лучей света (см. раздел «Интерференция света»):

    По условию задачи нас интересует положение второй интерференционной полосы, следовательно: . Применяя выражения (1.1) и (1.2), получаем:

    Выразим из формулы (1.3):

    Ответ м

    ПРИМЕР 2

    Задание В опыте Юнга на пути одного из лучей, исходящих от вторичного источника разместили перпендикулярно данному лучу тонкую стеклянную пластину с показателем преломления n. При этом центральный максимум сместился в положение, которое до этого занимал максимум номер m. Какова толщина пластины, если длина волны свет равна ?
    Решение Разность хода лучей при наличии пластины, учитывая, что луч падает на пластину по нормали, запишем как:

    В каждой точке две распространяющиеся в пространстве волны дают геометрическую сумму своих колебаний. Этот принцип называется суперпозицией волн. Указанный закон соблюдается с невероятной точностью. Однако в редких случаях он может игнорироваться. Это касается ситуаций, при которых волны распространяются в сложных средах, когда их интенсивность (амплитуда) становится очень большой. Данный принцип означает, что на некоторое количество электромагнитных волн, распространяющихся в определенной среде, сама среда откликается совершенно конкретным образом - она реагирует только на одну волну, как будто других рядом нет. Математически это значит, что в любой точке выбранной среды напряженность и индукция электромагнитного поля будут равны векторной сумме магнитных индукций и напряженностей всех совокупных полей. Вследствие принципа суперпозиции электромагнитных волн возникают такие явления, как дифракция и интерференция света. Они интересны с физической точки зрения, кроме того, поражают своей красотой.

    Что такое интерференция?

    Рассматривать данное явление можно только с соблюдением специальных условий. Интерференция света - это образование полос ослабления и усиления, которые чередуются друг с другом. Одним из важных условий является наложение электромагнитных волн (пучков света) друг на друга, причем их количество должно быть от двух и более. Стоячая волна является частным случаем. Необходимо заметить, что интерференция - это сугубо волновой эффект, применимый не только к свету. В стоячей волне, которая и образуется благодаря наложению на отраженную или падающую волну, наблюдаются максимумы (пучности) и минимумы (узлы) интенсивности, которые чередуются друг с другом.

    Основные условия

    Интерференция волн обусловлена их когерентностью. Что означает этот термин? Когерентность - это согласованность волн по фазе. Если две волны, которые идут от разных источников, наложить друг на друга, то их фазы будут меняться беспорядочно. Световые волны являются следствием излучения атомов, поэтому каждая из них - это результат наложения огромного количества составляющих.

    Минимумы и максимумы

    Для появления «правильных» усилений и ослаблений суммарных волн в пространстве необходимо, чтобы складываемые составляющие в выбранной точке друг друга гасили. То есть длительное время электромагнитные волны должны были бы находиться в противофазе, чтобы разность фаз постоянно оставалась одинаковой. Максимум же появляется в момент нахождения составляющих волн в одной фазе, то есть когда они усиливаются. Интерференция света наблюдается при условии постоянной разности фаз в данной точке. И такие волны называются когерентными.

    Естественные источники

    Когда можно наблюдать такое явление, как интерференция света? Излучаемые электромагнитные волны от естественных источников некогерентны, потому что они беспорядочно создаются разными атомами, обычно совершенно несогласованными друг с другом. Каждая выпущенная атомом отдельная волна представляет собой отрезок синусоиды, абсолютно когерентный сам с собой. Таким образом, необходимо разделить на два и более пучков один поток света, который идет от источника, а затем наложить получившиеся друг на друга. В этом случае мы сможем наблюдать минимумы и максимумы такого явления, как интерференция света.

    Наблюдение за наложением волн

    Как уже говорилось выше, интерференция света - это очень широкое понятие, при котором результат сложения световых пучков по интенсивности не равен интенсивности отдельных пучков. В результате этого явления имеет место перераспределение энергии в пространстве - образуются те самые минимумы и максимумы. Именно поэтому интерференционная картина - это просто чередование темных и светлых полос. Если использовать белый свет, то полосы будут окрашены в самые разные цвета. Но когда в обычной жизни мы встречаем интерференцию света? Это происходит довольно часто. К ее проявлениям можно отнести масляные пятна на асфальте, мыльные пузыри с их радужными переливами, игру света на поверхности закаленного металла, рисунки на крылышках стрекозы. Это все интерференция света в тонких пленках. В действительности наблюдать этот эффект не так просто, как может показаться. Если горят две совершенно одинаковые лампы, то их интенсивности складываются. Но почему же нет эффекта интерференции? Ответ на этот вопрос заключается в отсутствии у такого наложения важнейшего условия - когерентности волн.

    Бипризма Френеля

    Для получения интерференционной картины возьмем источник, который является узкой освещенной щелью, установленной параллельно ребру самой бипризмы. Идущая от него волна будет раздваиваться благодаря преломлению в половинах бипризмы и доходить до экрана двумя различными путями, то есть иметь разность хода. На экране, в той его части, где и происходит перекрытие пучков света от половин бипризмы, появляются чередующиеся темные и светлые полосы. Разность хода ограничена по некоторым соображениям. В каждом акте излучения атом выпускает так называемый волновой цуг (системы электромагнитных волн), который распространяется в пространстве и времени, сохраняя свою синусоидальность. Длительность этого цуга ограничивается затуханием собственных колебаний частички (электрона) в атоме и столкновениям данного атома с другими. Если пропускать через бипризму белый свет, то можно увидеть цветную интерференцию, как это было и с тонкими пленками. Если же свет монохроматический (от дугового разряда в каком-либо газе), то интерференционная картинка будет представлять собой просто светлые и темные полосы. Это означает, что длины волн у разных цветов различны, то есть свет разного цвета и характеризуется разностью длин волн.

    Получение наложенных волн

    Идеальный источник света - это лазер (генератор квантов), который является по своей природе когерентным источником вынужденных излучений. Длина когерентного лазерного цуга может достигать тысяч километров. Именно благодаря генераторам квантов ученые создали целую область современной оптики, которую и назвали когерентной. Этот раздел физики является невероятно перспективным в плане технических и теоретических достижений.

    Области применения эффекта

    В широком смысле понятие «интерференция света» - это модуляция в пространстве потока энергии и его состояния излучения (поляризации) в области пересечения нескольких электромагнитных волн (двух и более). Но где используют такой эффект? Применение интерференции света возможно в самых различных областях технологий и промышленности. Например, это явление используют для того, чтобы осуществлять прецизионный контроль поверхностей обработанных изделий, а также механических и тепловых напряжений в деталях, измерять объемы различных объектов. Также интерференция света нашла применение в микроскопии, в спектроскопии инфракрасного и оптического излучения. Это явление лежит в основе современной трехмерной голографии, активной спектроскопии комбинационного рассеяния. В основном интерференцию, как видно из примеров, используют для высокоточных измерений и вычисления показателей преломления в разных средах.