Рефераты Изложения История

Вода растворитель в ней растворяются. Главный растворитель

Маргарита Халисова
Конспект занятия «Вода - растворитель. Очищение воды»

Тема : Вода – растворитель . Очищение воды .

Цель : закрепить понимание того, что вещества в воде не исчезают, а растворяются .

Задачи :

1. Выявить вещества, которые растворяются в воде и которые не растворяются в воде .

2. Познакомить со способом очистки воды – фильтрованием .

3. Создать условия для выявления и проверки различных способов очистки воды .

4. Закрепить знания о правилах безопасного поведения при работе с различными веществами.

5. Развивать логическое мышление путем моделирования проблемных ситуаций и их решения.

6. Воспитывать аккуратность и безопасное поведение при работе с различными веществами.

7. Воспитывать интерес к познавательной деятельности, экспериментированию.

Образовательные области :

Познавательное развитие

Социально – коммуникативное развитие

Физическое развитие

Словарная работа :

обогащение : фильтр, фильтрование

активизация : воронка

Предварительная работа : беседы о воде, её роли в жизни человека; проводили наблюдения за водой в детском саду, дома; опыты с водой; рассматривали иллюстрации на тему «Вода » ; знакомились с правилами безопасности во время исследования и экспериментирования; загадывание загадок о воде; чтение художественной литературы, экологические сказки; игры о воде.

Демонстрационно-наглядный материал : кукла в синем костюме «Капелька» .

Раздаточный материал : стаканы пустые, с водой; растворители : сахар, соль, мука, песок, пищевой краситель, растительное масло ; пластмассовые ложечки, воронки, марлевые салфетки, ватные диски, фартуки клеёнчатые, кружки с чаем, лимон, варенье, одноразовые тарелки, клеёнка на столы.

Ход НОД

Воспитатель : - Ребята, прежде чем начать с вами беседу, я хочу загадать вам загадку :

В морях и реках обитает

Но часто по небу летает.

А как наскучит ей летать

На землю падает опять. (вода )

Догадались, о чём будет беседа? Правильно, о воде. Мы уже знаем, что вода – это жидкость .

Давайте вспомним какие свойства воды мы с вами установили с помощью опытов на других занятиях . Перечислите.

Дети :

1. У воды нет запаха .

2. Нет вкуса.

3. Она прозрачная.

4. Бесцветная.

5. Вода принимает форму того сосуда, в который её наливают.

6. Имеет вес.

Воспитатель : - Правильно. А хотите опять поэкспериментировать с водой. Для этого нужно нам ненадолго превратиться в учёных и заглянуть в нашу лабораторию экспериментирования :

Вправо, влево повернись,

В лаборатории окажись.

(дети подходят к мини-лаборатории) .

Воспитатель : - Ребята, посмотрите, кто опять у нас в гостях? И что нового появилось в лаборатории?

Дети : - «Капелька» , внучка деда Зная и красивая коробка.

Хотите узнать что лежит в этой коробке? Отгадайте загадки :

1. Отдельно – я не так вкусна,

Но в пище – каждому нужна (соль)

2. Я бел как снег,

В чести у всех.

В рот попал –

Там и пропал. (сахар)

3. Из меня пекут ватрушки,

И оладьи, и блины.

Если делаете тесто,

Положить меня должны (мука)

4. Жёлтое, а не солнце,

Льётся, а не вода ,

На сковороде пенится,

Брызгается и шипит (масло)

Пищевой краситель – применяется в кулинарии для украшения тортов, покраски яиц.

Песок – для строительства, играть с ним в песочнице.

Дети рассматривают пробирки с веществами.

Воспитатель : - Все эти вещества принесла «Капелька» для того, чтобы мы помогли ей разобраться в том, что произойдёт с водой при взаимодействии с ними.

Воспитатель : - Что нам нужно для того, чтобы начать нашу работу с водой?

Дети : - Фартуки.

(дети надевают клеёнчатые фартуки и подходят к столу, где на подносе стоят стаканы с чистой водой).

Воспитатель : - Давайте вспомним правила, перед тем как начать работу с этими веществами :

Дети :

1. Нельзя пробовать вещества на вкус – есть возможность отравиться.

2. Нюхать надо осторожно, так как вещества могут быть очень едкими и можно обжечь дыхательные пути.

Воспитатель : - Данил покажет, как правильно это делать (направляя запах от стакана ладошкой) .

I. Исследовательская работа :

Воспитатель : - Ребята, как вы думаете, что изменится, если растворить эти вещества в воде ?

Выслушиваю предполагаемый результат детей до смешивания веществ с водой.

Воспитатель : - Давайте проверим.

Предлагаю детям взять каждому стакан с водой.

Воспитатель : - Посмотрите и определите, какая там вода ?

Дети : - Вода прозрачная , бесцветная, без запаха, холодная.

Воспитатель : - Возьмите пробирку с веществом, которое вы выбрали и растворите в стакане с водой , помешивая ложечкой.

Рассматриваем. Выслушиваю ответы детей. Правильно ли они предполагали.

Воспитатель : - Что произошло с сахаром, солью?

Соль и сахар быстро растворяются в воде , вода остаётся прозрачной , бесцветной.

Мука тоже растворяются в воде , но вода становится мутной .

Но после того как вода немного постоит , мука оседает на дно, но раствор продолжает оставаться мутным.

Вода с песком стала грязной, мутной, если больше не мешать, то песок опустился на дно стакана, его видно, т. е. он не растворился .

Порошок пищевого растворителя быстро изменил цвет воды , значит, растворяется хорошо .

Масло не растворяется в воде : оно либо растекается по её поверхности тонкой плёнкой, либо плавает в воде в виде жёлтых капелек.

Вода – растворитель ! Но не все вещества растворяются в ней .

Воспитатель : - Ребята, мы с вами поработали и «Капелька» предлагает нам отдохнуть.

(Дети садятся за другой стол и проводится игра.

Игра : «Угадай напиток на вкус (чай) ».

Чаепитие с разными вкусами : сахаром, вареньем, лимоном.

II Экспериментальная работа.

Подходим к 1 столу.

Воспитатель : - Ребята, а можно ли воду очистить от этих веществ, которые мы растворяли ? Вернуть ей прежнее состояние прозрачности, без осадка. Как это сделать?

Предлагаю взять свои стаканы с растворами и подойти ко 2 столу.

Воспитатель : - Можно её профильтровать. Для этого нужен фильтр. Из чего можно сделать фильтр? Мы сделаем его с помощью марлевой салфетки и ватного диска. Показываю (в воронку вкладываю марлевую салфетку, сложенную в несколько слоёв, ватный диск и ставлю её в пустой стакан).

Делаем фильтры с детьми.

Показываю способ фильтрования, а затем дети сами фильтруют воду с веществом, который они выбрали.

Напоминаю, чтобы дети не торопились, вливали маленькой струйкой раствор в воронку с фильтром. Говорю пословицу : «Поспешишь – людей насмешишь» .

Рассматриваем, что же произошло после фильтрования воды с разными веществами.

Масло удалось отфильтровать быстро, потому что оно не растворилось в воде , на фильтре хорошо видны следы масла. Так же произошло с песком. Практически не отфильтровались вещества, которые хорошо растворились в воде : сахар, соль.

Вода с мукой после фильтрования стала более прозрачной. Большая часть муки осела на фильтре, только совсем маленькие частицы проскользнули сквозь фильтр и оказались в стакане, поэтому вода не совсем прозрачная.

После фильтрования красителя цвет фильтра изменился, но отфильтрованный раствор тоже остался цветным.

Итог НОД :

1. Какие вещества растворяются в воде ? – сахар, соль, краситель, мука.

2. Какие вещества не растворяются в воде – песок , масло.

3. С каким способом очистки воды мы познакомились ? – фильтрование.

4. С помощью чего? – фильтра.

5. Все ли соблюдали правила безопасности? (один пример) .

6. Что интересного (нового) вы сегодня узнали?

Воспитатель : - Вы сегодня узнали что вода – растворитель , проверили какие вещества растворяются в воде и как можно очистить воду от разных веществ.

«Капелька» благодарит вас за оказанную помощь и дарит вам альбом для зарисовки опытов. На этом наши исследования закончены, возвращаемся из лаборатории в группу :

Вправо, влево повернись.

В группе снова очутись.

Литература :

1. А. И. Иванова Экологические наблюдения и эксперименты в детском саду

2. Г. П. Тугушева, А. Е. Чистякова Экспериментальная деятельность детей среднего и старшего дошкольного возраста СПб : Детство-Пресс 2010.

3. Познавательно исследовательская деятельность старших дошкольников - Ребёнок в детском саду №3,4,5 2003год.

4. Исследовательская деятельность дошкольника - Д/в №7 2001год.

5. Экспериментирование с водой и воздухом – Д/В №6 2008год.

6. Экспериментальная деятельность в детском саду – Воспитатель ДОУ №9 2009год.

7. Игры – экспериментирования младшего дошкольника – Дошкольная педагогика №5 2010год.

(H2O) - одно из наиболее распространенных и важных веществ. Чистой воды в природе нет, - она всегда содержит примеси. Получают чистую воду методом перегонки. Перегнанная вода называется дистиллированной. Состав воды (по массе): 11,19 % водорода и 88,81 % кислорода. Чистая вода прозрачна, не имеет запаха и вкуса. Наибольшую плотность она имеет при 0° С (1 г/см3). Плотность льда меньше плотности жидкой воды, поэтому лед всплывает на поверхность. Вода замерзает при 0° С и кипит при 100° С при давлении 101 325 Па. Она плохо проводит теплоту и очень плохо проводит электричество. Вода - хороший растворитель. Молекула воды имеет угловую форму атомы водорода по отношению к кислороду образуют угол, равный 104,3°. Поэтому молекула воды - диполь: та часть молекулы, где находится водород, заряжена положительно, а часть, где находится кислород, - отрицательно. Благодаря полярности молекул воды электролиты в ней диссоциируют на ионы. В жидкой воде наряду с обычными молекулами Н2О содержатся ассоциированные молекулы, т. е. соединенные в более сложные агрегаты (Н2О)x благодаря образованию водородных связей (рис. 4). Наличием водородных связей между молекулами воды объясняются аномалии ее физических свойств: максимальная плотность при 4° С, высокая температура кипения (в ряду Н2О - Н2S - Н2Sе) аномально высокая теплоемкость (4,18 кДж/(г К)). С повышением температуры водородные связи разрываются, и полный разрыв наступает при переходе воды в пар.


Рисунок 4. Молекула воды

Растворы - однородная многокомпонентная система, состоящая из растворителя, растворённых веществ и продуктов их взаимодействия. По агрегатному состоянию растворы могут быть жидкими (морская вода), газообразными (воздух) или твёрдыми (многие сплавы металлов). Размеры частиц в истинных растворах - менее 10-9 м (порядка размеров молекул). Если молекулярные или ионные частицы, распределённые в жидком растворе присутствуют в нём в таком количестве, что при данных условиях не происходит дальнейшего растворения вещества, раствор называется насыщенным. (Например, если поместить 50 г NaCl в 100 г H2O, то при 200C растворится только 36 г соли).

Насыщенным называется раствор, который находится в динамическом равновесии с избытком растворённого вещества. Поместив в 100 г воды при 200C меньше 36 г NaCl получается ненасыщенный раствор. При нагревании смеси соли с водой до 1000C произойдёт растворение 39,8 г NaCl в 100 г воды. Если теперь удалить из раствора нерастворившуюся соль, а раствор осторожно охладить до 200C, избыточное количество соли не всегда выпадает в осадок. В этом случае мы имеем дело с перенасыщенным раствором. Перенасыщенные растворы очень неустойчивы. Помешивание, встряхивание, добавление крупинок соли может вызвать кристаллизацию избытка соли и переход в насыщенное устойчивое состояние. Ненасыщенный раствор - раствор, содержащий меньше вещества, чем в насыщенном. Перенасыщенный раствор - раствор, содержащий больше вещества, чем в насыщенном.

Растворы образуются при взаимодействии растворителя и растворённого вещества. Процесс взаимодействия растворителя и растворённого вещества называется сольватацией (если растворителем является вода - гидратацией). Растворение протекает с образованием различных по форме и прочности продуктов - гидратов. При этом участвуют силы как физической, так и химической природы. Процесс растворения вследствие такого рода взаимодействий компонентов сопровождается различными тепловыми явлениями. Энергетической характеристикой растворения является теплота образования раствора, рассматриваемая как алгебраическая сумма тепловых эффектов всех эндо - и экзотермических стадий процесса. Наиболее значительными среди них являются:

– поглощающие тепло процессы - разрушение кристаллической решётки, разрывы химических связей в молекулах;

– выделяющие тепло процессы - образование продуктов взаимодействия растворённого вещества с растворителем (гидраты) и др.

Если энергия разрушения кристаллической решетки меньше энергии гидратации растворённого вещества, то растворение идёт с выделением теплоты (наблюдается разогревание). Так, растворение NaOH – экзотермический процесс: на разрушение кристаллической решётки тратится 884 кДж/моль, а при образовании гидратированных ионов Na+ и OH - выделяется соответственно 422 и 510 кДж/моль. Если энергия кристаллической решётки больше энергии гидратации, то растворение протекает с поглощением теплоты (при приготовлении водного раствора NH4NO3 наблюдается понижение температуры).


Растворимость. Предельная растворимость многих веществ в воде (или в других растворителях) представляет собой постоянную величину, соответствующую концентрации насыщенного раствора при данной температуре. Она является качественной характеристикой растворимости и приводится в справочниках в граммах на 100 г растворителя (при определённых условиях). Растворимость зависит от природы растворяемого вещества и растворителя, температуры и давления.

1. Природа растворяемого вещества. Кристаллические вещества подразделяются на:

P - хорошо растворимые (более 1,0 г на 100 г воды);

M - малорастворимые (0,1 г - 1,0 г на 100 г воды);

Н - нерастворимые (менее 0,1 г на 100 г воды).

2. Природа растворителя. При образовании раствора связи между частицами каждого из компонентов заменяются связями между частицами разных компонентов. Чтобы новые связи могли образоваться, компоненты раствора должны иметь однотипные связи, т. е. быть одной природы. Поэтому ионные вещества растворяются в полярных растворителях и плохо в неполярных, а молекулярные вещества - наоборот.

3. Влияние температуры. Если растворение вещества является экзотермическим процессом, то с повышением температуры его растворимость уменьшается (Например, Ca(OH)2 в воде) и наоборот. Для большинства солей характерно увеличение растворимости при нагревании (рис. 5). Практически все газы растворяются с выделением тепла. Растворимость газов в жидкостях с повышением температуры уменьшается, а с понижением увеличивается.

4. Влияние давления. С повышением давления растворимость газов в жидкостях увеличивается, а с понижением уменьшается.

Рисунок 5. Зависимость растворимости веществ от температуры

Вода – самое важное химическое соединение на Земле. Вода главный компонент всех живых организмов и той среды, в которой живёт и существует человек. Физические свойства воды резко отличаются от свойств других веществ, и характер этих различий определяет природу физического и биологического мира.

С течением времени жи вые организмы эволюционировали, что позволило им покинуть водную среду и перейти на сушу и подняться в воздух. Они приобрели эту спо собность, сохранив в своих организмах водный раствор в виде жидкой, составляющей ткани, плазмы крови и межклеточных жидкостей, содер жащих необходимый запас ионов и молекул.

Вода в отличие от органических растворителей хорошо растворяет соли, так как она обладает очень высокой диэлектрической проницаемостью (примерно 81 при комнатной температуре) и ее молекулы имеют тенденцию соединяться с ионами с обра зованием гидратированных ионов . Оба эти свойства обусловлены боль шим электрическим дипольным моментом 1 молекулы воды. И это свойство воды играет большую роль в развитии жизни и обмене веществ.

В воде происходит следующий процесс. Сила притяжения или отталкивания электрических зарядов обратно пропорциональна диэлектрической проницаемости среды, окружаю щей данные заряды. Это значит, что два противоположных электриче ских заряда взаимно притягиваются в воде с силой, равной 1/80 силы их взаимного притяжения в воздухе (или в вакууме). Поэтому, если кристалл соли хлорида натрия находится в воде, то образующие его ионы отделяются от кристалла значительно легче, чем если бы кристалл на ходился на воздухе, поскольку электростатическая сила, притягивающая ион обратно к поверхности кристалла из водного раствора, составляет лишь 1/80 силы притяжения данного иона из воздуха. Поэтому не удивительно, что при комнатной температуре тепловое движение не может вызвать переход ионов из кристалла в воздух, но в то же время тепло вого движения ионов вполне достаточно для преодоления относительно-слабого притяжения, когда кристалл окружен водой, что и приводит к переходу большого числа ионов в водный раствор.

Гидратация иона

При растворении солей в воде образуются гидратированные ионы . Образование гидратированных ионов приводит к стабилизации ионов в растворах воды. Каждый отрицательный ион притягивает положительные концы нескольких ближайших молекул воды и стремится удержать их около себя.

Положительные ионы, которые обычно меньше анионов, притягивают воду еще сильнее; каждый катион притягивает отрицательные концы молекул воды и прочно связывает несколько молекул, удерживая их около себя; при этом образуется гидрат, кото рый может быть весьма устойчивым, особенно в случае катионов, несу щих двойной или тройной положительный заряд.

Число молекул воды, присоединенных к данному катиону, его лигандность, определяется размерами катиона. Лигандность атома равна числу атомов, связанных с ним или находящихся с ним в контакте. Лигандность также называется координационным числом .

В воде небольшой катион Ве 2 + образует тетрагидрат Be(OH 2) 4 2+ . Несколько большие ионы, например Mg 2+ или Аl 3+ , образуют гексагидраты Mg(OH 2) 6 2+ , Аl(ОН 2) 6 3+ (рисунок 1 ).

Рисунок 1. Структура гидратированных ионов Be ( OH 2 ) 4 2+ и А l (ОН 2 ) 6 3+ .

В гидратированных ионах силы взаимодействия между катионами и молекулами воды настолько велики, что ионы часто удерживают вокруг себя слой из молекул воды даже в кристаллах. Такая вода называется кристаллизацион но й. Этот эффект ярче проявляется в случае двухи трехзарядных катио нов, чем в случае однозарядных. Например, тетрагидратный комплекс Ве(ОН 2) 4 2+ встречается в различных солях, в том числе в ВеСО 3 . 4Н 2 О, ВеС1 2 . 4Н 2 О и BeSO 4 . 4H 2 O и несомненно присутствует в растворе.

MgCl 2 6 H 2 O А1С1 3 2 О

Mg(C1 О 3 ) 2 6H 2 O KA1(S0 4 ) 2 12H 2 O

Mg(C1 О 4 ) 2 6 Н 2 0 Fe(NH 4 ) 2 (SO 4 ) 2 6H 2 O

MgSiF 6 6H 2 O Fe(NO 3 ) 2 6H 2 O

NiSnCl 3 6H 2 O FeCl 3 6H 2 O

В таком кристалле, как FeSO 4 . 7H 2 O, шесть молекул воды присоединены к иону железа в виде комплекса Fe(OH 2) 6 2+ , а седьмая зани мает в кристалле иное положение, располагаясь вблизи иона сульфата.

В квасцах KAl(SO 4) 2 . 12H 2 О шесть молекул воды из двенадцати связа ны с ионом алюминия, а остальные шесть расположены вокруг иона калия.

Существуют также кристаллы, в которых катионы лишены некото рой доли или всех молекул воды. Так, сульфат магния образует три кристаллических соединения: MgSO 4 . 7H 2 O, MgSO 4 . H 2 O и MgSO 4 .

Устойчивость ионов в водном растворе является результатом такого распределения электрического заряда между определенным числом атомов, при котором ни один атом не проявляет значительного откло нения от электронейтральности. Рассмотрим гидратированные катионы Ве(ОН 2) 4 2+ и А1(ОН 2) 6 3+ , представленные на рисунке 1. Как бериллий, так и алюминий имеют электроотрицательность 1,5, а электроотрицательность кислорода равна 3,5. Разность электроотрицательностей соответствует ионности, немного превышающей 50%, достаточной для перемещения половины электрического заряда каждой связи на центральный атом, оставляя его примерно нейтральным. Связи О-Н могут иметь на 25% ионный характер, при этом весь заряд ионов перей дет на восемь атомов водорода в Ве(ОН 2) 4 2+ и на двенадцать атомов водорода в А1(ОН 2) 6 3+ , каждый из которых будет иметь заряд ¼ + Кроме того, каждый из этих атомов водорода может участвовать в образовании слабой связи с другой молекулой воды таким образом, что его заряд будет нейтрализоваться взаимодействием с электронной па рой атома кислорода, и тогда общий заряд гидратированных катионов Ве(ОН 2) 4 (ОН 2) 8 2+ и Al(OH 2) 6 (OH 2) 12 3+ будет распределен между наи более отдаленными атомами водорода, каждый из которых будет иметь заряд 1/8 + . Фактически такая электрическая поляризация воды распро страняется на большие расстояния; это и обусловливает высокую ди электрическую проницаемость воды.

Известно, что при образовании в водных растворах водородных связей такими молекулами, как Н 3 РО 4 , все четыре атома кислорода могут стать почти эквивалентными, обеспечивая почти полный резонанс двой ной связи между четырьмя положениями. При таком резонансе каждый атом кислорода имеет валентность 1 1 /4, удовлетворяя по связям фосфор и оставляя 3 /4 на связь с водородом. Если каждая из трех групп ОН использует свой атом водорода на образование слабой связи (в ¼ свя зи) с атомом кислорода молекулы воды, то остальные ¾ связи ока жутся достаточными, чтобы сделать атомы кислорода фосфата электрически нейтральными. Точно так же фосфатный кислород без атома во дорода может образовать слабые (в ¼) связи с атомами водорода трех соседних молекул воды, что делает его тоже электрически нейтральным.

Каждый из четырех атомов кислорода жизненно-важного фосфат-иона РО 4 3 подобным же образом может образовать водородные связи с тремя молекула ми воды. Электрический заряд гидратированного иона PO 4 (HOH) 12 3 будет тогда распределен между двенадцатью внешними атомами кис лорода, каждый с зарядом ¼-. Аналогичные гидратированные струк туры образуются ионами (НО) 2 РО 2 - и НОРО 3 2- , которые присутствуют почти в равных количествах в живых организмах.

Клатратные соединения

Благородные газы (аргон и др.), простые углеводороды и многие другие вещества образуют с водой так называемые кристаллические гидраты; так, ксенон образует гидрат Хе. 5 3 /4 Н 2 О, устойчивый примерно при 2°С и парциальном давлении ксенона 1 атм; метан образует аналогичный гидрат CH 4 . 5 3 /4 Н 2 О.

Рентгеноскопические исследования показали, что эти кристаллы имеют структуру, в которой молекулы воды образуют благодаря водородным связям решетку, напоминающую решетку льда; в ней каждая молекула воды окружена четырьмя другими молекулами, расположенными в вершинах тетраэдра на расстоянии 276 пм, но с более открытым расположением молекул, что обусловливает образование полостей (в форме пентагональных додекаэдров или других многогранников с пентагональными или гексагональными гранями), достаточно больших, чтобы в них могли помещаться атомы газов или другие молекулы (рисунок 2 ). Кри сталлы такого типа называют клатратными кристаллами .

Структура гидрата ксенона и гидратов аргона, криптона, метана, хлора, брома, сероводорода и некоторых других веществ показана на рис. 2. Кубическая ячейка данной структуры имеет ребро около 1200 пм и содержит 46 молекул воды.

Рисунок 2. Структура клатратного кристалла гидрата ксенона.

Атомы ксенона занимают пустоты (восемь на кубическую ячейку) в трехмерной решетке, образо ванной молекулами воды с участием водородных связей (46 молекул на кубическую ячейку). Рас стояние О-Н О равно 276 пм, как в кристалле льда. Два атома ксенона при атомах кислорода О О О и ½ ½ ½ находятся в центрах почти правильных пентагональных додекаэдров. Остальные шесть атомов ксенона при О ¼ ½; O ¾ ½; ½ O ¼; 1/2 O ¾; ¼ ½ O находятся в центрах четырнадцатигранников. Каж дый четырнадцатигранник (один из них выделен в центре рисунка) имеет 24 вершины (молекулы воды), две шестиугольные грани и 12 пятиугольных граней.

Гидрат хлороформа СНС1 3 . 17Н 2 О имеет несколько более сложную структуру, в которой молекула хлороформа окружена 16-сторонним многогранником, образованным 28 мо лекулами воды. Можно получить также клатратные соединения, в которых кри сталлическая решетка с водородными связями образована органически ми молекулами, например молекулами мочевины (H 2 N) 2 CO.

Была предложена интересная интерпретация механизма действия химически инертных анестезирующих средств, например галотана F 3 CCBrClH и ксенона. Согласно этому механизму, анестезирующее вещество нарушает водную структуру межклеточной или внутриклеточ ной жидкости путем образования клатратных структур, воздействую щих на нормальные межклеточные системы связи. Местные анестези рующие средства отличаются по механизму своего действия. Их молекулы могут образовать водородные связи, и, вероятно, анестезирующее действие является результатом соединения молекул анестезиру ющего вещества с белковыми молекулами или другими молекулами, входящими в состав нервов.

Другие растворители электролитов

Помимо воды и некоторые другие жидкости могут служить ионизирующими растворителями электролитов с образованием растворов, проводящих электрический ток. К таким жидкостям относятся перекись водорода, фтористый водород, жидкий аммиак и цианистый водород. Подобно воде, все эти жидкости имеют большую диэлектрическую прони цаемость. Жидкости с малой диэлектрической проницаемостью, такие, как бензол или сероуглерод, не являются ионизирующими растворите лями.

Жидкости с большой диэлектрической проницаемостью иногда называют полярными жидкостями .

Высокая диэлектрическая проницаемость воды, обуславливающая поразительную способность воды растворять вещества ионного строе ния, отчасти является следствием того, что вода способна образовывать водородные связи. Благодаря этим связям молекулы воды располагаются так, чтобы частично нейтрализовать электрическое поле. Водород ные связи образуются также и в других жидкостях - в перекиси водо рода, фтористом водороде, аммиаке (температура кипения - 33,4 °С), цианистом водороде], которые способны растворять вещества, облада ющие ионным строением.

Растворимость

Изолированная система находится в равновесии, когда ее свойства, в частности распределение компонентов между фазами, остаются по стоянными в течение длительного времени.

Если находящаяся в равновесии система состоит из раствора и другой фазы, представляющей собой один из компонентов раствора в виде чистого вещества, то концентрация этого вещества в растворе на зывается растворимостью данного вещества. Раствор в этом случае называют насыщенным .

Например, раствор буры при 0°С, содержащий 1,3 г безводного тетрабората натрия Na 2 B 4 O 7 в 100 г воды, находится в равновесии с твердой фазой Na 2 B 4 O 7 . 10H 2 О (декагидратом тетрабората натрия); со временем эта система не изменяется, состав раствора остается постоянным. Растворимость Na 2 B 4 O 7 . 10H 2 О в воде составляет, следовательно, 1,3 г Na 2 B 4 O 7 на 100 г или, учитывая гидратационную воду, 2,5 г Na 2 B 4 O 7 . 10H 2 О на 100 г воды.

Изменение в твердой фазе

Растворимость Na 2 B 4 O 7 . 10H 2 О с повышением температуры быстро возрастает; при 60 °С растворимость достигает уже 20,3 г Na 2 B 4 O 7 на 100 г. (рисунок 3 ). При нагревании системы до 70 °С и выдерживании в течение некоторого времени при этой температуре наблюдается новое явление - появляется третья фаза - кристаллическая, имеющая состав Na 2 B 4 O 7 . 5H 2 О, а прежняя кристаллическая фаза исчезает. При этой температуре растворимость декагидрата выше, чем растворимость пентагидрата; раствор, насыщенный декагидратом, оказывается пересы щенным по отношению к пентагидрату, и поэтому из такого раствора выпадают кристаллы пентагидрата. Чтобы вызвать процесс кристаллизации, иногда к раствору необходимо доба вить «затравку» (небольшие кристаллики вещества, которое растворено в данном растворе). В дальнейшем идет процесс рас творения неустойчивой фазы и кристаллизации устойчивой до тех пор, пока неустойчивая фаза не исчезнет. Третий гидрат тетрабората натрия - кернит Na 2 B 4 O 7 . 4H 2 О - обладает большей растворимостью, чем два других.

Рисунок 3. Растворимость Na 2 SO 4 . 10 H 2 O

В рассмотренном случае декагидрат менее растворим, чем пентагидрат при температуре до 61 °С, и он является, следовательно, устой чивой фазой ниже этой температуры. Кривые растворимости этих двух гидратов пересекаются при 61 °С, причем выше этой температуры пентагидрат устойчив в контакте с раствором.

В устойчивой твердой фазе, помимо сольватации, могут происходить и другие процессы. Так, ромбическая сера в определенных рас творителях менее растворима, чем моноклинная, при температурах ни же 95,5 °С, т. е. ниже температуры взаимного превращения этих двух форм; выше указанной температуры моноклинная форма менее раство рима. Принципы термодинамики требуют, чтобы температура, при ко торой кривые растворимости двух форм вещества пересекаются, была одной и той же для всех растворителей и в то же время была температурой, при которой пересекаются кривые давления насыщенного пара.

Зависимость растворимости от температуры

Растворимость вещества с повышением температуры может увели чиваться или уменьшаться. В этом отношении убедительным примером служит сульфат натрия. Растворимость Na 2 SO 4 . 10H 2 O (устойчивая твердая фаза ниже 32,4 °С) очень быстро возрастает с повышением температуры, увеличиваясь от 5 г Na 2 SO 4 на 100 г воды при 0°С до 55 г при 32,4°С. Выше 32,4 °С устойчивой твердой фазой является Na 2 SO 4 ; растворимость этой фазы быстро уменьшается с повышением темпера туры: от 55 г при 32,4 °С до 42 г при 100 °С (рисунок 4 ).

Рисунок 4. Растворимость Na 2 SO 4 . 10 H 2 O в зависимости от температуры

Растворимость большинства солей с повышением температуры возрастает; растворимость многих солей (NaCl, К 2 СrO 7) только немного изменяется с повышением температуры; и лишь некоторые соли, напри мер Na 2 SO 4 , FeSO 4 . H 2 O и Na 2 CO 3 . H 2 O, обладают растворимостью, уменьшающейся с повышением температуры (рисунок 4 и рисунок 5 ).

Рисунок 5. Кривые растворимости некоторых солей в воде

Зависимость растворимости от природы растворенного вещества и растворителя

Растворимость веществ сильно меняется в разных растворителях., Тем не менее установлено несколько общих правил, относящихся к растворимости, которые применимы главным образом к органическим со единениям.

Одно из этих правил гласит, что вещество имеет тенденцию растворяться в таких растворителях, которые химически подобны ему. Так, углеводород нафталин С 10 Н 8 обладает высокой растворимостью в бен зине, представляющем собой смесь углеводородов, несколько меньшей растворимостью - в этиловом спирте С 2 Н 5 ОН, молекулы которого состоят из коротких углеводородных цепей с гидроксильными группами, и очень плохой растворимостью - в воде, которая сильно отличается от углеводородов. В то же время борная кислота В(ОН) 3 , являющаяся гидроокисью, обладает умеренной растворимостью в воде и в спирте, т. е. в веществах, которые содержат гидроксильные группы, и нерастворима в бензине. Три указанных растворителя сами подтверждают то же правило: как бензин, так и вода смешиваются со спиртом (раство ряются в нем), в то время как бензин и вода взаимно растворяются лишь в очень небольших количествах.

Этим фактам можно дать следующее объяснение: углеводородные группы (состоящие только из атомов углерода и водорода) взаимно притягиваются очень слабо, о чем свидетельствуют более низкие тем пературы плавления и кипения углеводородов по сравнению с другими веществами приблизительно такой же молекулярной массы. В то же время между гидроксильными группами и молекулами воды существу ет очень сильное межмолекулярное притяжение; температуры плавле ния и киления воды лежат выше соответствующих температур любого другого вещества с небольшой молекулярной массой. Такое сильное притяжение обусловлено частично ионным характером связей О-Н, благодаря чему на атомы накладывается электрический заряд. Поло жительно заряженные атомы водорода притягиваются затем к отрица тельно заряженным атомам кислорода других молекул, образуя водо родные связи и прочно удерживая молекулы вместе.

Термин гидрофильный часто применяют по отношению к веществам или группам, притягивающим воду, а термин гидрофобный применяют по отношению к веществам или группам, отталкивающим воду и при тягивающим углеводороды. В действительности молекулы гидрофобного вещества воздействуют силами электронного вандерваальсова притяжения как на молекулы воды, так и на молекулы углеводородов. Растворимость паров воды, например, в керосине (смеси углеводородов) при 25 °С и давлении 0,0313 атм (т. е. при давлении насыщенного пара над жидкой водой при этой температуре) составляет 72 мг в 1 кг рас творителя, в то время как растворимость метана при том же парци альном давлении несколько меньше-10 мг в 1 кг керосина. Молекулы воды притягиваются молекулами керосина несколько сильнее, нежели молекулы метана. Различие между водой и метаном заключается в том, что при более высоких парциальных давлениях пары воды конденси руются в жидкость, которая стабилизируется межмолекулярными во дородными связями, тогда как метан продолжает оставаться газом.

Растворимость метана в полярных растворителях почти та же, что и в неполярных; в спиртах от метанола СН 3 ОН до пентанола (амилового спирта) С 5 Н 11 ОН растворимость метана составляет 72-80% зна чения для керосина. Силы вандерваальсова притяжения молекул рас творителя в отношении молекул метана остаются почти одинаковыми для разных растворителей. С другой стороны, растворимость водяных паров при давлении 0,313 атм в амиловом спирте в 1400 раз больше, чем в керосине, и вода смешивается в любых соотношениях с легкими спиртами.

Вещества, состоящие из небольших неполярных молекул, например кислород, азот и метан, растворяются в воде примерно в 10 раз хуже, чем в неполярных растворителях. Вещества, состоящие из более крупных неполярных молекул, по существу не растворяются в воде, но, как правило, хорошо растворяются в неполярных растворителях. Вода как бы противодействует включению этих молекул, поскольку образование необходимых для этого пустот сопряжено с разрывом или деформацией водородных связей между молекулами воды. Соединения, подобные бен зину и нафталину, не растворяются в воде, поскольку их молекулы в растворе мешали бы молекулам воды образовывать столь же большое число прочных водородных связей, как в чистой воде; с другой сторо ны, борная кислота растворима в воде потому, что уменьшение числа связей между молекулами воды компенсируется образованием прочных водородных связей между молекулами воды и гидроксильными группа ми молекул борной кислоты.

Растворимость солей и гидроокисей в воде

При изучении неорганической химии, особенно качественного анализа, полезно знать примерную растворимость широко применяющихся веществ. Простые правила растворимости приведены ниже. Эти прави ла применимы к соединениям обычных катионов: Na + , K + , NH 4 + , Mg 2+ , Са 2+ , Sr 2 +, Ва 2 +, Al 3+ , Cr 3+ , Mn 2+ , Fe 2 +, Fe 3+ , Co 2 +, Ni 2 +, Cu 2 +, Zn 2 +, Ag+, Cd 2 +, Sn 2+ , Hg 2 2+ , Hg 2+ и РЬ 2 +. Когда говорят, что вещество «рас творимо», то под этим понимают, что растворимость его превышает при мерно 1 г в 100 мл (примерно 0,1 М по катиону), а когда говорят, что вещество «нерастворимо», то это значит, что растворимость его не превышает 0,1 г в 100 мл (приблизительно 0,01 М): вещества с растворимостью в этих пределах или близких к ним называют умеренно раство римыми.

Класс растворимых веществ:

Все нитраты растворимы.

Все ацетаты растворимы.

Все хлориды , бромиды и иодиды растворимы, за исключением со ответствующих соединений серебра, ртути (I) (ртути со степенью окис ления + 1) и свинца. Соединения РbС1 2 и РbВr 2 умеренно растворимы в холодной воде (1 г в 100 мл при 20 °С) и лучше растворимы в горячей воде (3 и 5 г в 100 мл при 100°С соответственно).

Все сульфаты растворимы, за исключением сульфатов бария, строн ция и свинца. Умеренно растворимы CaSO 4 , Ag 2 SO 4 и Hg 2 SO 4 .

Все соли натри я , калия и аммония растворимы: исключение составляют NaSb(OH) 6 (антимонат натрия), K 2 PtCl 6 (гексахлрроплатинат калия), (NH 4) 2 PtCl 6 , К 3 Со(ТО 2) 6 (гексанитрокобальтат калия), (NH 4)зСо(NO 2) 6 и КсlO 4 .

Класс нерастворимых веществ :

Все гидроокиси нерастворимы, за исключением гидроокисей щелочных металлов, аммония и бария; Са(ОН) 2 и Sr(OH) 2 умеренно растворимы.

Все средние карбонаты и фосфаты нерастворимы, за исключением соответствующих соединений щелочных металлов и аммония. Многие кислые карбонаты и фосфаты, например Са(НСО 3) 2 иСа(Н 2 РО 4) 2 , растворимы.

Все сульфиды , за исключением сульфидов щелочных металлов, аммония и щелочноземельных металлов, нерастворимы.

К. х. н. О. В. Мосин

Литературный источник : Л. Полинг, П. Полинг. / перевод М. В. Сахарова. Ред. М. Л. Карапетьянц. Химия., Москва 1978 г.

Энергия образования молекул воды высока, она сос­тавляет 242 кДж/моль. Этим объясняется устойчивость во­ды в природных условиях. Устойчивость в сочетании с электрическими характеристиками и молекулярным стро­ением делают воду практически универсальным растворите­лем для многих веществ. Высокая диэлектрическая проницаемость обусловливает самую большую растворяю­щую способность воды по отношению к веществам, мо­лекулы которых полярны. Из неорганических веществ в воде растворимы очень многие соли, кислоты и основания. Из органических веществ растворимы лишь те, в молекулах которых полярные группы составляют значительную часть – многие спирты, амины, органические кислоты, са­хара и т.д.

Растворение веществ в воде сопровождается образо­ванием слабых связей между их молекулами или ионами и молекулами воды. Это явление называется гидратацией. Для веществ с ионной структурой характерно формирование гидратных оболочек вокруг катионов за счет донорно-акцепторной связи с неподеленной парой электронов атома кислорода. Катионы гидратированы тем в большей степени, чем меньше их радиус и выше заряд. Анионы, обычно менее гидратированные, чем катионы, присоединяют молекулы воды водородными связями.

В процессе растворения веществ изменяется величина электрического момента диполя молекул воды, изменяется их пространственная ориентация, разрываются одни и обра­зуются другие водородные связи. В совокупности эти явления приводят к перестройке внутренней структуры.

Растворимость твердых веществ в воде зависит от природы этих веществ и температуры и изменяется в широких пределах. Повышение температуры в большинстве случаев увеличивает растворимость солей. Однако раст­воримость таких соединений, как CaSО 4 ·2H 2 О, Ca(OH) 2 , при повышении температуры снижается.

При взаимном растворении жидкостей, одной из кото­рых является вода, возможны различные случаи. Например, спирт и вода смешиваются друг с другом в любых соотношениях, так как оба полярны. Бензин (неполярная жидкость) в воде практически нерастворим. Наиболее общим является случай ограниченной взаимной раст­воримости. Примером могут служить системы вода–эфир, вода–фенол. При нагревании взаимная растворимость для одних жидкостей возрастает, для других – уменьшается. Например, для системы вода–фенол повышение температуры выше 68 °С приводит к неограниченной взаимной рас­творимости.

Газы (например, NH 3 , СО 2 , SО 2) хорошо растворимы в воде, как правило, в тех случаях, когда они вступают с водой в химическое взаимодействие; обычно же растворимость газов невелика. При повышении температуры растворимость газов в воде уменьшается.

Следует отметить, что растворимость кислорода в воде почти в 2 раза выше, чем растворимость азота. Вследствие этого состав растворенного в воде водоемов или очистных сооружений воздуха отличается от атмосферного. Раство­ренный воздух обогащен кислородом, что очень важно для организмов, обитающих в водной среде.

Для водных растворов, как и для любых других, харак­терны понижение температуры замерзания и повышение температуры кипения. Одно из общих свойств растворов проявляется в явлении осмоса. Если два раствора разной концентрации разделены полупроницаемой перегородкой, молекулы растворителя проникают через нее из разбавленного раствора в концентрированный. Механизм осмоса можно понять, если учесть, что, согласно общему есте­ственному принципу, все молекулярные системы стремятся к состоянию наиболее равномерного распределения (в случае двух растворов - стремление к выравниванию концентраций по обе стороны перегородки).

Вода - универсальный растворитель, приспособленный к любому виду жизнедеятельности. Она растворяет почти любые вещества, в частности ионные и полярные соединения. Уникальные свойства воздействия характеризуются высокой диэлектрической проницаемостью. В природе вода содержит массу веществ и соединений, попавших в неё так или иначе.

Процесс растворения

На первый взгляд, процесс распада прост, но его суть гораздо сложнее, чем выглядит. Именно поэтому существуют вещества, растворимые в воде и нерастворимые в других жидкостях. Создание раствора связано с физическими процессами: диффузия описывает само разжижение частиц в результате размешивания. Гидратация является процессом, при котором образуются химические связи воды с добавленным веществом.

Растворение веществ характеризуется:

  • произошедшей гидратацией;
  • изменением цвета раствора;
  • тепловыми эффектами (при некоторых условиях) и пр. факторами.

Доказательством произошедшего смешивания выступает изменение цвета раствора. Например, примесь сульфата меди (которая изначально белого цвета) окрашивает воду в интенсивный голубой цвет. Если за окраску отвечают химические свойства оснований, то выделение теплоты происходит из-за физических причин. Таким образом, это полностью физико-химический процесс.

Что такое раствор

Раствор - однородная смесь веществ с растворителем. Растворимые вещества распадаются под действием полярных молекул воды на мелкие частицы, в результате смешиваясь до полной однородности. Водные растворы бывают бесцветными и окрашенными, но неизменно одно - они прозрачные вне зависимости от цвета.

Не имеет значения, добавлять воду в какое-то вещество или сыпать его. Также процесс постепенно произойдет и без вмешательства (размешивания), в некоторых случаях образуется видимый осадок. В других случаях, раствор окрашивается в цвет добавленного вещества, но обязательно остается прозрачным на просвет.

Не растворившиеся вещества оседают на дно плотным слоем под давлением воды. Либо могут оставаться на поверхности в виде неравномерных частиц. Жидкости образуют слои, поскольку имеют разную плотность с водой. Например, растительное масло образует пленку на поверхности.


Какие вещества растворяются в воде, а какие - нет

Вода действительно универсальна и уникальна по своим свойствам. Иногда требуется сильнее перемешать, чтобы добиться полного разрушения частиц, но в большинстве своем вода размывает любые соединения. Однако есть вещества, которые не подвластны даже ей.

Существует условие, по которому количество воды должно быть превышающим, чтобы вещества именно разошлись, а не осели на дно. На примере пищевой соли: при добавлении большого количества, она перестает растворяется и образует плотный, напоминающий камень, слой.

Кроме того, от некоторых веществ жидкость можно очистить, от других - нет. Так, например, ртуть в воде растворяется и процесс очищения невозможен. Другие похожие вещества из встречаемых в быту: поваренная и морская соль, сахар любого типа, пищевая сода, крахмал. Они невидимые и склоны к окрашиванию воды, но частицы настолько мелкие, что они попросту проходят фильтрацию вместе с раствором. Сыпучие вещества вроде песка или глины не растворяются, потому воду можно отфильтровать.

Классификация способности по веществам:

  1. Хорошо растворимые (спирт, сахар, соль (она же натрий), большинство щелочей и нитратов металлов).
  2. Мало растворимые (гипс, бертолетова соль, бензол, метан, азот и кислород).
  3. Практически нерастворимые (драгоценные и полудрагоценные металлы, керосин, ряд масел, инертные газы, сульфид меди).

Отдельная группа - жирорастворимые и водорастворимые витамины. Они необходимы для здоровья человека, а за счет собственной способности растворяться, накапливаются в организме из-за содержания воды. К водорастворимому типу относятся витамины С, В1, В2, В3 (РР), В6, В12, фолиевая кислота, пантотеновая кислота и биотин.

Таким образом, вода как растворитель весьма уникальна. Список сложно и нерастворимых веществ достаточно короткий, чтобы говорить об универсальности воды в качестве растворителя.