Рефераты Изложения История

Искусственный фотосинтез. ЭлектроВести - Искусственный фотосинтез: революция в солнечной энергетике, но попозже

Фотосинтез, способность растений, используя энергию солнечного света, окислять воду с выделением кислорода – важнейшее эволюционное приобретение природы. Ученые всего мира, в том числе из США, Японии и стран Евросоюза более 30 лет бьются над повторением природных технологий, созданием искусственного фотосинтеза . Однако до сих пор не удавалось повторить достижения природы столь же эффективно. Главной проблемой искусственного фотосинтеза до последнего времени была скорость реакций. Самые быстрые методы до сих пор позволяли достичь скорости реакций на два порядка ниже, чем они происходят в природных условиях.

На днях стало известно, что исследователям из Королевского технологического института (КТИ) в Стокгольме удалось получить молекулярный катализатор, который может окислять воду в кислород столь же быстро, как и растения. Результаты исследований чрезвычайно важны и позволяют создать более эффективные технологии использования солнечной и других видов возобновляемой энергии .

Коллектив ученых под руководством профессора Личенг Сан (Licheng Sun) создал рекордно быстрый молекулярный катализатор. Если природный фотосинтез происходит со скоростью от 100 до 400 превращений в секунду, то новый катализатор достигает скорости более 300 превращений в секунду.

«Это, безусловно, мировой рекорд и настоящий прорыв в искусственном фотосинтезе», - пояснил профессор Личенг Сан.

По мнению профессора, для возобновляемой энергетики этот факт открывает множество новых возможностей: «Такая скорость позволит в будущем создавать промышленное оборудование для производства водорода в Сахаре, где солнечный свет в изобилии».

Учитывая стремительный рост цен на нефтяное топливо, использование нового молекулярного катализатора позволит заложить основы многих важных изменений. С его помощью можно использовать солнечный свет для преобразования углекислого газа в различные виды топлива, например, в метанол . Могут быть разработаны технологии прямой конвертации солнечной энергии в водород.

Личенг Сан добавил, что он и его коллеги упорно и интенсивно трудятся над тем, чтобы сделать технологию достаточно дешевой. «Я убежден, что уже в течение десяти лет может появиться технология, основанная на нынешних исследованиях, достаточно дешевая, чтобы конкурировать с углеродным топливом», - заявил он.

Личенг Сан работал в области исследований фотосинтеза в течение почти двадцати лет, более половины всего срока пребывания в Королевском технологическом институте. Основываясь на своем опыте и мнениях коллег, профессор считает, что эффективный катализатор для окисления воды является ключом к решению проблем солнечной энергии.

Высокая эффективность натурального является определенным ориентиром в развитии отрасли солнечной энергетики. Однако теперь, этот природный пример высокой производительности может оказаться устаревшим.

Впервые учёным удалось эффективно совместить химический электролиз с деятельностью бактерий. Система производит спирт и другие вещества буквально «из воздуха»

Исследователи из Гарвардского университета создали бионическую систему, которая преобразует и сохраняет солнечную энергию в химическом виде, используя гибридный механизм из неорганических материалов и живых микроорганизмов. Такая схема помогает решить сразу две проблемы: 1) сохранение , которая производится в избытке в светлое время суток и которой не хватает вечером; 2) устранение лишнего CO2 из атмосферы.

Устройство, получившее название Bionic leaf 2.0, создано на основе предыдущей версии листа, разработкой которого занималась та же команда ученых. Энергогенерирующая система состоит из солнечной панели, зажатой между листами кобальтового катализатора и ячейки с бактериями Ralstonia eutropha, занимающими нижнюю половину листа. При погружении в сосуд с водой при комнатной температуре и нормальном давлении искусственный лист имитирует фотосинтез. Ток из солнечных пластин Bionic leaf 2.0 подается на катализаторы, которые расщепляют молекулы воды на кислород и водород. Затем водород попадает в ячейки с ГМ-бактериям, которые отличаются тем, что могут соединять молекулы водорода с полученным из воздуха углеродом и превращают их в жидкое топливо.

Полученный водород уже можно было бы использовать в качестве топлива, но учёные решили усложнить систему, чтобы сделать её более эффективной. На следующем этапе в дело вступают бактерии Ralstonia eutropha, которые питаются водородом и CO2 из атмосферы. Благодаря этим питательным веществам колония бактерий активно увеличивается в размерах. Среди продуктов жизнедеятельности микроорганизмов - различные полезные химикаты. Учёные экспериментировали с генетическими модификациями и вывели бактерий, производящих различные виды спирта (C3 и C4+C5 на диаграммах) и прекурсоры пластика (PHB на диаграммах).

«Для этой работы мы разработали новый катализатор на основе кобальта и фосфора, который не производит реактивных форм кислорода. Это позволило снизить нам напряжение, что привело к резкому росту эффективности», - комментирует один из авторов работы.

Учёные уже десятилетиями пытаются выращивать бактерий на электродах, чтобы заставить их принять участие в химической цепочке реакций, но в этом процессе постоянно возникали разные проблемы, которые мешали создать по-настоящему эффективную систему

Главные из этих проблем - выщелачивание тяжёлых металлов из электродов, а также появление кислорода в активной форме. Оба этих процесса угнетают жизнь счастливых, здоровых бактерий. Важным открытием химиков из Гарварда стало использование системы электролиза с катодом и анодом на основе кобальта. По существу, катод и анод производят синергетический эффект, представляя собой самозаживляющуюся систему. Если один деградирует, второй снабжает его веществами, и наоборот.

«Я думаю, это на самом деле довольно волнующее исследование, - прокомментировал работу коллег Йоханнес Лишнер (Johannes Lischner) из Имперского колледжа Лондона. - Преобразование солнечного света в химическое топливо с высокой эффективностью - что-то вроде чаши Святого Грааля для возобновляемой энергетики».

По мнению независимых специалистов, которые не имеют отношения к данному исследованию, научная работа действительно революционная. Впервые в истории учёным удалось совместить химический электролиз с деятельностью бактерий с высоким КПД преобразования и сохранения энергии. Работы в этом направлении шли с 1960-х годов.

Если совместить эту систему с обычными фотоэлементами, то эффективность восстановления CO2 составит около 10% - это выше, чем в природном фотосинтезе!

Учёные предполагают, что их система эффективного электролиза с преобразованием энергии в жидкое топливо найдёт применение, в первую очередь, в развивающихся странах, где нет развитой электрической инфраструктуры, чтобы распределять и сохранять электричество, сгенерированное солнечными панелями в дневное время.

В 1976 году д-р Джозеф Кац, из Aragon Nat., Штат Иллинойс, США, создал "искусственный лист", так назвала пресса открытие искусственного фотосинтеза.

На самом деле речь шла о топливном элементе, произведенном во время одной из стадий фотосинтеза, а именно той, в которой фотоны сталкиваются с хлорофиллом, способствуя выбросу электронов. Открытие является источником дешевой энергии из воды и хлорофилла, а также источником водорода, который считают идеальным топливом. В то же время оно представляет собой важный шаг на пути искусственного синтеза органических веществ (углеводов и жиров).

Фотосинтез - это процесс, в ходе которого, используя свет в качестве источника энергии, растения синтезируют из углерода, происходящего из простых неорганических веществ (диоксид углерода), сложные органические вещества. Операция проходит в специализированных клеточных органеллах, называемых хлоропластами, которые содержат необходимый для осуществления действия зеленый пигмент - хлорофилл. Процесс является чрезвычайно сложным.

На первом этапе фотосинтеза хлорофилл поглощает фотоны света из солнечного излучения и в ответ вырабатывает эквивалентное количество электронов. Эти электроны приводят к образованию ферментов, необходимых для осуществления последующих стадий фотосинтеза. Хлорофилл восстанавливает электроны в молекулах воды в ходе процесса, называемого фотолиз воды, проходящего при участии одного из ранее сформированных ферментов, катализированных структурами, содержащими атомы марганца и кальция. Молекулы воды расщепляются на ионы водорода и кислорода; водород участвует в химических реакциях, приводящих к образованию молекул АТФ, а кислород выделяется в атмосферу и используется бесчисленными организмами для дыхания.

На втором этапе растения поглощают из атмосферы и с помощью ряда ферментов в цепи сложных операций строят из углерода, выделенного из CO2, такие углеводы, как сахароза или крахмал, а из них и другие органические вещества.

В данном процессе важна его эффективность: почти ничего не теряется, биохимические циклы работают с большой скоростью и точностью, которые кажутся неправдоподобными, ферменты постоянно перерабатываются и возрождаются.

Фотосинтез является феноменом, который несмотря на изученность до мельчайших деталей, по-прежнему является чудом.

Недавно группа исследователей из Массачусетского технологического института (MIT) под руководством профессора Даниэля Г. Nocera объявила, что она получила то, что они называют "первым искусственным листом" : солнечную мини-панель размером с игральную карту, из недорогого, стабильного и устойчивого к износу полупроводникового материала, покрытого соединениями катализаторов, который при погружении в воду, имитирует процесс фотосинтеза с высокой степенью эффективности.

Если вам понравился этот материал, то предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку - ТОП об экологически безопасных технологиях, новой науке и научных открытиях вы можете найти там, где вам максимально удобно

Фотосинтез - это преобразование энергии сета в химическую энергию. Под воздействием электромагнитного излучения видимого спектра вода и диоксид углерода преобразуются в молекулярный кислород и глюкозу, так же происходит разделение воды на водород и кислород.

Тем самым искусственный фотосинтез имеет два направления, задачи:

  • Преобразование углекислого газа из атмосферы (борьба с парниковым эффектом, загрязнениями и как побочный продукт — топливо и прочие соединения).
  • Получение из воды водорода, который будет использован для получения электроэнергии и как топливо.

Искусственный фотосинтез стал возможным благодаря применению искусственных наноразмерных супрамолекулярных систем.

Преобразование углекислого газа

Принцип работы системы искусственного фотосинтеза подразумевает преобразование атмосферного углекислого газа в органические соединения при помощи энергии света.

Полученные химические образования в дальнейшем будут использоваться для производства топлива, различных видов пластмасс и фармацевтических препаратов. Кроме энергии солнца, химическая реакция не требует дополнительных источников питания.

Технология искусственного фотосинтеза позволяет преобразовать углекислый газ в метанол. Инновационная система приводится в действие специальными бактериями и энергией солнечного света. Эта разработка позволит человечеству сократить объемы использования ископаемых видов энергоносителей – угля, нефти и природного газа.

Технология преобразования CO2 в промышленных масштабах должна изменить многие негативные с экологической точки зрения процессы на планете. В чатсности за этим направлением многие специалисты видят способ борьбы с глобальным потеплением.

Вариант установки искусственного фотосинтеза

В процессе естественного фотосинтеза листья с помощью энергии солнца перерабатывают двуокись углерода, которая реагирует с водой и формирует биомассу растения. В системе искусственного фотосинтеза, нанопровода из кремния и двуокиси титана получают солнечную энергию и доставляют электроны бактериям Sporomusa ovata, благодаря чему углекислый газ перерабатывается и вступает в реакцию с водой, давая на выходе различные химические вещества, в том числе — ацетаты.

Генетически модифицированные бактерии Escherichia coli способны трансформировать ацетаты и уксусную кислоту в сложные органические полимеры, которые являются «стандартными блоками» для получения полимеров РНВ, изопрена и биоразлагаемого n-бутанола. Полученные соединения входят в состав распространенных химических продуктов – от лакокрасочных материалов до антибиотиков.

Искусственный лист

Усилиями английского ученого Джулиана Мелкиорри был разработан синтетический лист, способный выполнять функции фотосинтеза. Искусственный зеленый лист использует хлоропласты, полученные из обычных растений. Согласно технологии, хлоропласты помещены в белковую среду, благодаря которой они равномерно распределяются по толще жидкости и не коагулируют. Предполагается, что данная разработка будет использоваться в городских условиях для производства кислорода. Не исключено, что синтетический лист найдет применение и в сфере космических исследований.

Подобный симбиоз полупроводниковых элементов с живыми организмами может стать фундаментом для дальнейшей разработки программируемой системы фотосинтеза, которая будет производить широкий ряд органических веществ, используя для этого только солнечную энергию. Если будущая система будет корректно работать, человечество сможет создавать пластмассу и горючее топливо буквально из воздуха.

Энергия из фотосинтеза

Как и естественные преобразователи солнечной энергии, искусственные фотосистемы должны состоять из таких компонентов:

  • Улавливатель солнечного излучения,
  • Центр проведения реакций,
  • Средство хранения полученной энергии.

Важнейшая задача, которую решают в лабораториях — повышение КПД искусственного фотосинтеза. Поэтому значительная часть работы сводится к поиску оптимальных материалов для создания каждого из вышеперечисленных блоков.

Систему искусственного фотосинтеза с высоким КПД и наноразмерами ждут в робототехнике, в частности в сфере создания нанороботов, где вопрос обеспечения энергией один из ключевых.

Компактные установки для получения энергии из фотосинтеза предположительно заменят солнечные батареи и ветряки на домах с нулевым потреблением, а также имеют перспективы для интеграции в системы умного дома, специализированные на энергетическое самообеспечение.

МОСКВА, 26 ноя — РИА Новости, Ольга Коленцова. В атмосфере концентрация свободного кислорода составляет 20,95%, а углекислого газа — 0,04%. Это соотношение поддерживается жизненными циклами представителей флоры и фауны. Но количество растений на нашей планете стремительно уменьшается, а объемы выбросов углекислого газа растут. Поэтому уже сейчас ученые озаботились разработкой технологий, которые бы могли обеспечить людей и животных пригодным для дыхания воздухом в будущем.

Кислород существовал во Вселенной почти с ее рождения, выяснили ученые Наблюдения за одной из древнейших галактик показали, что кислород появился во Вселенной практически через мгновения после ее рождения, что увеличивает наши шансы на обнаружение внеземного разума и жизни.

Основную роль в процессе фотосинтеза играет свет. Из солнечного излучения, доходящего до Земли, лишь половина имеет длину волны, с которой может "работать" хлорофилл. Причем максимумы поглощения находятся в синей (около 400 нанометров) и красной (около 700 нанометров) областях спектра.

"Этот зеленый пигмент содержится в листьях и захватывает солнечный свет, а набор ферментов и других протеинов использует энергию, чтобы расщеплять молекулы воды на кислород, водород и электроны. Протоны водорода и электроны, движущиеся по цепочке из белков, принимают участие в создании энергии, необходимой для синтеза органических соединений", — поясняет Павел Федураев, старший научный сотрудник Лаборатории природных антиоксидантов Института живых систем Балтийского федерального университета им. И. Канта.

Из подходящего диапазона солнечного излучения большая часть теряется в процессе поглощения и внутренних реакций. В среднем для фотосинтеза растениями используется лишь 1-2% от всего поступающего на Землю солнечного света.

© Иллюстрация РИА Новости. Алина Полянина

© Иллюстрация РИА Новости. Алина Полянина

Чтобы воссоздать фотосинтез в искусственных условиях, необходимо повторить два ключевых этапа: сбор солнечной энергии и расщепление молекул воды. Кстати, искусственный фотосинтез возможно использовать для производства как кислорода, так и водорода. Во втором случае человечество будет надежно обеспечено экологичным, эффективным и недорогим топливом.

Пока исследования искусственного фотосинтеза находятся на стадии лабораторных разработок. Полупроводники и живые бактерии помещают в фотосинтетическую биогибридную систему (искусственный лист), на которую воздействуют солнечным светом. Полупроводники собирают его энергию, генерируя электроны, необходимые для того, чтобы состоялась реакция в растворе воды и углекислого газа. Бактерия использует электроны для преобразования молекулы углекислого газа, тем самым способствуя образованию водорода (H2), метана (CH4), этанола (C2H5OH). А вода в это же время окисляется на поверхности другого полупроводника, в процессе чего выделяется кислород.

Но расщепить молекулу воды не так просто, это требует около двух с половиной электронвольт энергии. Следовательно, нужен катализатор, который "подтолкнет" химическую реакцию.

Некоторые исследователи, занимающиеся искусственным фотосинтезом, имитируют естественный процесс без привлечения живых организмов. По большому счету эти разработки сводятся к созданию принципиально нового катализатора, так как существующие (основанные на магнии, титане, кобальте, рутении) довольно токсичны и имеют низкий коэффициент полезного действия.

Есть разработки по искусственному фотосинтезу, в которых используются живые организмы (пока только бактерии и отдельно взятые клетки). Подобные исследования основаны на получении информации о фотосинтезе с помощью цианобактерий. Сначала им в геном вставляется последовательность нуклеотидов, содержащая инструкции по синтезу белковых меток. Далее живые организмы извлекаются вместе с метками и проводится исследование полученной фотосистемы (бактерий, которые перерабатывают белки). Ученые утверждают, что данная информация поможет создать искусственные аналоги фотосинтеза.